Online estimation of the power coefficient versus tip-speed ratio curve of wind turbines

Author(s):  
Jeroen D. M. De Kooning ◽  
Louis Gevaert ◽  
Jan Van de Vyver ◽  
Tine L. Vandoorn ◽  
Lieven Vandevelde
Author(s):  
Eiji Ejiri ◽  
Tomoya Iwadate

Gyromill wind turbines with three different blade profiles were investigated experimentally and numerically in order to verify the effect of the direction of camber on aerodynamic performance. Experiments were carried out using a model turbine impeller with an axial length of 200 mm and a diameter of 200 mm. The results showed that the maximum power coefficient was higher for blades with negative camber than for ones with positive camber. On the other hand, the operating range of the tip speed ratio tended to be narrower for the blades with negative camber than for the ones with positive camber. An unsteady numerical flow analysis around the wind turbines was conducted using a commercial code employing the finite volume method. The results showed that the power coefficient of one blade had a maximum value in the second quadrant and that the blades with negative camber were advantageous for obtaining high rotational force in the position, compared with the blades with positive camber and a symmetrical blade.


2022 ◽  
pp. 1-34
Author(s):  
Ojing Siram ◽  
Neha Kesharwani ◽  
Niranjan Sahoo ◽  
Ujjwal K. Saha

Abstract In recent times, the application of small-scale horizontal axis wind turbines (SHAWTs) has drawn interest in certain areas where the energy demand is minimal. These turbines, operating mostly at low Reynolds number (Re) and low tip speed ratio (λ) applications, can be used as stand-alone systems. The present study aims at the design, development, and testing of a series of SHAWT models. On the basis of aerodynamic characteristics, four SHAWT models viz., M1, M2, M3, and M4 composed of E216, SG6043, NACA63415, and NACA0012 airfoils, respectively have been developed. Initially, the rotors are designed through blade element momentum theory (BEMT), and their power coefficient have been evaluated. Thence, the developed rotors are tested in a low-speed wind tunnel to find their rotational frequency, power and power coefficient at design and off-design conditions. From BEMT analysis, M1 shows a maximum power coefficient (Cpmax) of 0.37 at λ = 2.5. The subsequent wind tunnel tests on M1, M2, M3, and M4 at 9 m/s show the Cpmax values to be 0.34, 0.30, 0.28, and 0.156, respectively. Thus, from the experiments, the M1 rotor is found to be favourable than the other three rotors, and its Cpmax value is found to be about 92% of BEMT prediction. Further, the effect of pitch angle (θp) on Cp of the model rotors is also examined, where M1 is found to produce a satisfactory performance within ±5° from the design pitch angle (θp, design).


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
M. Niyat Zadeh ◽  
M. Pourfallah ◽  
S. Safari Sabet ◽  
M. Gholinia ◽  
S. Mouloodi ◽  
...  

AbstractIn this paper, we attempted to measure the effect of Bach’s section, which presents a high-power coefficient in the standard Savonius model, on the performance of the helical Savonius wind turbine, by observing the parameters affecting turbine performance. Assessment methods based on the tip speed ratio, torque variation, flow field characterizations, and the power coefficient are performed. The present issue was stimulated using the turbulence model SST (k- ω) at 6, 8, and 10 m/s wind flow velocities via COMSOL software. Numerical simulation was validated employing previous articles. Outputs demonstrate that Bach-primary and Bach-developed wind turbine models have less flow separation at the spoke-end than the simple helical Savonius model, ultimately improving wind turbines’ total performance and reducing spoke-dynamic loads. Compared with the basic model, the Bach-developed model shows an 18.3% performance improvement in the maximum power coefficient. Bach’s primary model also offers a 12.4% increase in power production than the initial model’s best performance. Furthermore, the results indicate that changing the geometric parameters of the Bach model at high velocities (in turbulent flows) does not significantly affect improving performance.


Author(s):  
Alessandro Bianchini ◽  
Francesco Balduzzi ◽  
Giovanni Ferrara ◽  
Lorenzo Ferrari

The assessment of robust CFD techniques is casting new light on the aerodynamics of airfoils rotating around an axis orthogonal to flow direction, with particular reference to flow curvature effects and stall mechanisms. In particular, Darrieus wind turbines’ designers are taking profit from these new discovers to improve the aerodynamic design of the rotors, in view of an increase of the overall efficiency and a reduction of the structural stresses on the blades. A controversial design parameter for Darrieus turbines, especially in case of small-size rotors, is represented by the location of the blade-spoke connection along the chord. The most common solution is indeed to place the connection at approximately airfoil’s quarter chord, i.e. where the pressure center is commonly located for low incidence angles. In some cases, however, the blade is connected at middle chord due to symmetry or aesthetic reasons. In some small turbines, innovative designs have even disregarded this parameter. Even if one can argue that the blade connection point is about to have some aerodynamic effects on the turbine’s performance, the real impact of this important design parameter is often not fully understood. The present study makes use of extensive CFD simulations on a literature case study, using a NACA 0021 airfoil, to assess the influence of the blade-spoke connection point. In particular, the differences in terms of power coefficient curve of the turbine, optimal tip-speed ratio, torque profiles and stresses on the connection are analyzed and discussed. Detailed flow analyses are also shown for azimuthal positions of particular interest. Results on the selected case study showed that the middle-chord blade-spoke connection point seems to guarantee a higher performance of the rotor, even if additional solicitation is applied to the connection itself. It is further shown that the same performance can indeed be obtained with the airfoil attached at quarter chord and properly pitched. By doing so, the stresses are contained and the performance is maximized.


2012 ◽  
Vol 189 ◽  
pp. 448-452
Author(s):  
Yan Jun Chen ◽  
Guo Qing Wu ◽  
Yang Cao ◽  
Dian Gui Huang ◽  
Qin Wang ◽  
...  

Numerical studies are conducted to research the performance of a kind of lift-drag type vertical axis wind turbine (VAWT) affected by solidity with the CFD method. Moving mesh technique is used to construct the model. The Spalart-Allmaras one equation turbulent model and the implicit coupled algorithm based on pressure are selected to solve the transient equations. In this research, how the tip speed ratio and the solidity of blade affect the power coefficient (Cp) of the small H-VAWT is analyzed. The results indicate that Cp curves exhibit approximate parabolic form with its maximum in the middle range of tip speed ratio. The two-blade wind turbine has the lowest Cp while the three-blade one is more powerful and the four-blade one brings the highest power. With the certain number of blades, there is a best chord length, and too long or too short chord length may reduce the Cp.


2021 ◽  
Author(s):  
Diplina Paul ◽  
Abhisek Banerjee

Abstract Savonius-style wind turbines are mainly gauged by two types of coefficients namely: (i) coefficient of power (CP) and (ii) coefficient of torques (CT). Coefficient of power is defined as the ratio of power generated by the turbine to the total power available to the turbine from the free-flowing wind. This is synonymous to the operational efficiency of the wind turbine. Coefficient of torque reflects the torque generating ability of the turbine. In this manuscript, experiments have been performed using three different types of rotor profiles for Savonius-style wind turbines (SSWTs) namely, classical SSWT, Benesh type SSWT and elliptical shaped SSWT using oriented jets. Using deflector plates the orientation of jets have been varied from 20° to 70°. Addition of deflector plates to the wind turbines, assists in maximizing the utilization of wind energy. Experiments have been performed in the laminar air flow. Mechanical loads have been used to study Coefficient of performance (CP) and coefficient of torque (CT) as a function of tip speed ratio (TSRs). The velocity of the wind is adjusted by varying the rheostat that controls the AC motor for the wind tunnel systems. Experimental results indicated that optimum performance could be achieved from all three types of SSWT variants at TSR ∼ 0.70. Out of the three designs studied in this manuscript, elliptic shaped SWT yielded best coefficient of performance equal to 0.39 at TSR = 0.70.


Author(s):  
Peter Bachant ◽  
Martin Wosnik

The performance characteristics of two cross-flow axis hydrokinetic turbines were evaluated in UNH’s tow and wave tank. A 1m diameter, 1.25m (nominal) height three-bladed Gorlov Helical Turbine (GHT) and a 1m diameter, four-bladed spherical-helical turbine (LST), both manufactured by Lucid Energy Technologies, LLP were tested at tow speeds up to 1.5 m/s. Relationships between tip speed ratio, solidity, power coefficient (Cp), kinetic exergy efficiency, and overall streamwise drag coefficient (Cd) are explored. As expected, the spherical-helical turbine is less effective at converting available kinetic energy in a relatively low blockage, free-surface flow. The GHT was then towed in waves to investigate the effects of a periodically unsteady inflow, and an increase in performance was observed along with an increase in minimum tip speed ratio at which power can be extracted. Regarding effects of turbulence, it was previously documented that an increase in free-stream homogenous isotropic turbulence increased static stall angles for airfoils. This phenomenon was first qualitatively investigated on a smaller scale with a NACA0012 hydrofoil in a UNH water tunnel, using an upstream grid turbulence generator and using high frame-rate PIV to measure the flow field. Since the angle of attack for a cross-flow axis turbine blade oscillates with higher amplitude as tip speed ratio decreases, any delay of stall should allow power extraction at lower tip speed ratios. This hypothesis was tested experimentally on a larger scale in the tow tank by creating grid turbulence upstream of the turbine. It is shown that the range of operable tip speed ratios is slightly expanded, with a possible improvement of power coefficient at lower tip speed ratios. Drag coefficients at higher tip speed ratios seem to increase more rapidly than in the non-turbulent case.


2013 ◽  
Vol 724-725 ◽  
pp. 527-530
Author(s):  
Yuttachai Keawsuntia

The objective of this research is to study the small multi-blades windmill for water pumping by using a studying performance of windmill which has a curvature plate ratio of 0.07 and determine overall efficiency and evaluate economic of the system. The results from the test run of windmill rotor model in the wind tunnel at a wind velocity of 3 m/s, the windmill give maximum power coefficient of 0.296 at a tip speed ratio of 1.18. The results from the test run of the windmill-pump system at 2 m head have an overall efficiency of 0.239 at the wind velocity of 1.2 m/s. The output of 2.38 L/min, which implies a rate of return for water pumping at 0.038 USD per cubicmetre of water base on 10 year-life time of windmill.


Sign in / Sign up

Export Citation Format

Share Document