IGBTs and current sensors fault diagnosis in direct-drive PSMG wind turbine systems using adaptive thresholds

Author(s):  
Imed Jlassi ◽  
Antonio J. Marques Cardoso
2013 ◽  
Vol 60 (8) ◽  
pp. 3419-3428 ◽  
Author(s):  
Xiang Gong ◽  
Wei Qiao

Bearing faults account for a large portion of all faults in wind turbine generators (WTGs). Current-based bearing fault diagnosis techniques have great economic benefits and are potential to be adopted by the wind energy industry. This paper models the modulation effects of bearing faults on the stator currents of a direct-drive wind turbine equipped with a permanent-magnet synchronous generator (PMSG) operating with a variable shaft rotating frequency. Based on the analysis, a method consisting of appropriate current frequency and amplitude demodulation algorithms and a 1P-invariant power spectrum density algorithm is proposed for bearing fault diagnosis of variable-speed direct-drive wind turbines using only one-phase stator current measurements, where 1P frequency stands for the shaft rotating frequency of a wind turbine. Experimental results on a direct-drive wind turbine equipped with a PMSG operating in a wind tunnel are provided to verify the proposed fault diagnosis method. The proposed method is demonstrated to have advantages over the method of directly using stator current measurements for WTG bearing fault diagnosis.


Author(s):  
Jiatang Cheng ◽  
Yan Xiong

Background: The effective diagnosis of wind turbine gearbox fault is an important means to ensure the normal and stable operation and avoid unexpected accidents. Methods: To accurately identify the fault modes of the wind turbine gearbox, an intelligent diagnosis technology based on BP neural network trained by the Improved Quantum Particle Swarm Optimization Algorithm (IQPSOBP) is proposed. In IQPSO approach, the random adjustment scheme of contractionexpansion coefficient and the restarting strategy are employed, and the performance evaluation is executed on a set of benchmark test functions. Subsequently, the fault diagnosis model of the wind turbine gearbox is built by using IQPSO algorithm and BP neural network. Results: According to the evaluation results, IQPSO is superior to PSO and QPSO algorithms. Also, compared with BP network, BP network trained by Particle Swarm Optimization (PSOBP) and BP network trained by Quantum Particle Swarm Optimization (QPSOBP), IQPSOBP has the highest diagnostic accuracy. Conclusion: The presented method provides a new reference for the fault diagnosis of wind turbine gearbox.


Sign in / Sign up

Export Citation Format

Share Document