Investigation and Improvement of Phase-Shift Self-Oscillating Current Controller for power electronic converters at high switching frequency

Author(s):  
Quentin Bellec ◽  
Jean-Claude Le Claire ◽  
Mohamed Fouad Benkhoris ◽  
Peyofougou Coulibaly
Author(s):  
Roghayeh Gavagsaz-Ghoachani ◽  
Matheepot Phattanasak ◽  
Majid Zandi ◽  
Jean-Philippe Martin ◽  
Babak Nahid-Mobarakeh ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 853 ◽  
Author(s):  
Abdul Yasin ◽  
Muhammad Ashraf ◽  
Aamer Bhatti

The key issue in the implementation of the Sliding Mode Control (SMC) in analogue circuits and power electronic converters is its variable switching frequency. The drifting frequency causes electromagnetic compatibility issues and also adversely affect the efficiency of the converter, because the proper size of the inductor and the capacitor depends upon the switching frequency. Pulse Width Modulation based SMC (PWM-SMC) offers the solution, however, it uses either boundary layer approach or employs pulse width modulation of the ideal equivalent control signal. The first technique compromises the performance within the boundary layer, while the latter may not possess properties like robustness and order reduction due to the absence of the discontinuous function. In this research, a novel approach to fix the switching frequency in SMC is proposed, that employs a low pass filter to extract the equivalent control from the discontinuous function, such that the performance and robustness remains intact. To benchmark the experimental observations, a comparison with existing double integral type PWM-SMC is also presented. The results confirm that an improvement of 20% in the rise time and 25.3% in the settling time is obtained. The voltage sag during step change in load is reduced to 42.86%, indicating the increase in the robustness. The experiments prove the hypothesis that a discontinuous function based fixed frequency SMC performs better in terms of disturbances rejection as compared to its counterpart based solely on ideal equivalent control.


2013 ◽  
Vol 61 (4) ◽  
pp. 809-828 ◽  
Author(s):  
R. Barlik ◽  
M. Nowak ◽  
P. Grzejszczak

Abstract This paper presents an analysis of the power transfer between two DC circuit by use a single phase galvanically isolated dual active bridge - DAB. The analytical description of instantaneous values of the currents in both DC and in AC circuits of the DAB is done. The influence of the dead time as well as voltage drops across the transistors and diodes of the bridges is examined. The different relations between voltages of the DC circuits coupled through DAB and various phase shift ratios are considered. The analytical relations describing the average values of the currents in DC circuits are derived. These currents can be used to predict the power in both DC circuits and power losses generated in semiconductor devices of the converter. It is assumed that the voltage drops across these devices in conduction states are constant. The calculation of the transferred power as well as power losses and energy efficiency for the DAB converter power rated 5600 VA which is used to energy transfer between DC circuits 280 V and 51 V±20% is presented. The proposed relations and calculation results can be useful for preliminary evaluation of power losses generated in semiconductor devices and for design of the cooling system. Due to the high switching frequency of 100 kHz, the phase shift modulation for the control of DAB is used. To validate the theoretical investigations a few experimental results are presented.


2011 ◽  
Vol 59 (4) ◽  
pp. 555-559
Author(s):  
K. Zymmer ◽  
P. Mazurek

Comparative investigation of SiC and Si power electronic devices operating at high switching frequencyThe paper presents results of measurements of the reverse recovery current and dynamic forward voltage of the silicon carbide (SiC) Schottky diodes operating at a 500 A/μs current slope. These data were compared with the corresponding parameters determined for ultrafast silicon (Si) diodes. Results of power losses measurement in SiC Schottky diodes operating at switching frequency range of (10-200) kHz are presented and compared with corresponding data of ultrafast Si diodes. Also, results of power losses measurements in transistors of dc voltage switch are shown. Investigations were conducted with a SiC and the ultrafast Si freewheeling diode at the transistor switching frequency of 100 kHz. The results of measuring power losses dissipated in the dc converter with a SiC Schottky diode and the ultrafast silicon diode are also presented.


Sign in / Sign up

Export Citation Format

Share Document