Multiple Target Angular and Radial Velocity Association in Interferometric Radar

Author(s):  
Eric Klinefelter ◽  
Jeffrey A. Nanzer
1965 ◽  
Vol 5 ◽  
pp. 109-111
Author(s):  
Frederick R. West

There are certain visual double stars which, when close to a node of their relative orbit, should have enough radial velocity difference (10-20 km/s) that the spectra of the two component stars will appear resolved on high-dispersion spectrograms (5 Å/mm or less) obtainable by use of modern coudé and solar spectrographs on bright stars. Both star images are then recorded simultaneously on the spectrograph slit, so that two stellar components will appear on each spectrogram.


1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


2015 ◽  
Vol 71-72 ◽  
pp. 127-128
Author(s):  
B.J. Hrivnak ◽  
W. Lu ◽  
G. Van de Steene ◽  
H. Van Winckel ◽  
J. Sperauskas ◽  
...  

2009 ◽  
Vol 47 (05) ◽  
Author(s):  
G Kéri ◽  
L Őrfi ◽  
Z Greff ◽  
Z Varga ◽  
B Szokol ◽  
...  

2021 ◽  
Vol 296 ◽  
pp. 126242
Author(s):  
Oliver J. Fisher ◽  
Nicholas J. Watson ◽  
Laura Porcu ◽  
Darren Bacon ◽  
Martin Rigley ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rokhsareh Rozbeh ◽  
Karl Forchhammer

AbstractPII proteins constitute a widespread signal transduction superfamily in the prokaryotic world. The canonical PII signal proteins sense metabolic state of the cells by binding the metabolite molecules ATP, ADP and 2-oxoglutarate. Depending on bound effector molecule, PII proteins interact with and modulate the activity of multiple target proteins. To investigate the complexity of interactions of PII with target proteins, analytical methods that do not disrupt the native cellular context are required. To this purpose, split luciferase proteins have been used to develop a novel complementation reporter called NanoLuc Binary Technology (NanoBiT). The luciferase NanoLuc is divided in two subunits: a 18 kDa polypeptide termed “Large BiT” and a 1.3 kDa peptide termed “Small BiT”, which only weakly associate. When fused to proteins of interest, they reconstitute an active luciferase when the proteins of interest interact. Therefore, we set out to develop a new NanoBiT sensor based on the interaction of PII protein from Synechocystis sp. PCC6803 with PII-interacting protein X (PipX) and N-acetyl-L-glutamate kinase (NAGK). The novel NanoBiT sensor showed unprecedented sensitivity, which made it possible to detect even weak and transient interactions between PII variants and their interacting partners, thereby shedding new light in PII signalling processes.


Sign in / Sign up

Export Citation Format

Share Document