Microfabricated ceramic sensor arrays for direct interfacing to deep brain structures in primates

Author(s):  
T.D. Coates ◽  
R. Hampson ◽  
S. Deadwyler ◽  
G.A. Gerhardt
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Estefanía Hernandez-Martin ◽  
Enrique Arguelles ◽  
Yifei Zheng ◽  
Ruta Deshpande ◽  
Terence D. Sanger

AbstractHigh-frequency peripheral nerve stimulation has emerged as a noninvasive alternative to thalamic deep brain stimulation for some patients with essential tremor. It is not known whether such techniques might be effective for movement disorders in children, nor is the mechanism and transmission of the peripheral stimuli to central brain structures understood. This study was designed to investigate the fidelity of transmission from peripheral nerves to thalamic nuclei in children with dystonia undergoing deep brain stimulation surgery. The ventralis intermediate (VIM) thalamus nuclei showed a robust evoked response to peripheral high-frequency burst stimulation, with a greatest response magnitude to intra-burst frequencies between 50 and 100 Hz, and reliable but smaller responses up to 170 Hz. The earliest response occurred at 12–15 ms following stimulation onset, suggesting rapid high-fidelity transmission between peripheral nerve and thalamic nuclei. A high-bandwidth, low-latency transmission path from peripheral nerve to VIM thalamus is consistent with the importance of rapid and accurate sensory information for the control of coordination and movement via the cerebello-thalamo-cortical pathway. Our results suggest the possibility of non-invasive modulation of thalamic activity in children with dystonia, and therefore the possibility that a subset of children could have beneficial clinical response without the need for invasive deep brain stimulation.


Author(s):  
Sebastiano Lucerna ◽  
Francesco M. Salpietro ◽  
Concetta Alafaci ◽  
Francesco Tomasello
Keyword(s):  

2019 ◽  
Vol 122 (3) ◽  
pp. 975-983 ◽  
Author(s):  
Yonatan Katz ◽  
Michael Sokoletsky ◽  
Ilan Lampl

Deep brain nuclei, such as the amygdala, nucleus basalis, and locus coeruleus, play a crucial role in cognition and behavior. Nonetheless, acutely recording electrical activity from these structures in head-fixed awake rodents has been very challenging due to the fact that head-fixed preparations are not designed for stereotactic accuracy. We overcome this issue by designing the DeepTarget, a system for stereotactic head fixation and recording, which allows for accurately directing recording electrodes or other probes into any desired location in the brain. We then validated it by performing intracellular recordings from optogenetically tagged amygdalar neurons followed by histological reconstruction, which revealed that it is accurate and precise to within ~100 μm. Moreover, in another group of mice we were able to target both the mammillothalamic tract and subthalamic nucleus. This approach can be adapted to any type of extracellular electrode, fiber optic, or other probe in cases where high accuracy is needed in awake, head-fixed rodents. NEW & NOTEWORTHY Accurate targeting of recording electrodes in awake head-restrained rodents is currently beyond our reach. We developed a device for stereotactic implantation of a custom head bar and a recording system that together allow the accurate and precise targeting of any brain structure, including deep and small nuclei. We demonstrated this by performing histology and intracellular recordings in the amygdala of awake mice. The system enables the targeting of any probe to any location in the awake brain.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Soutarou Taguchi ◽  
Nachi Tanabe ◽  
Jun-ichi Niwa ◽  
Manabu Doyu

Little is known about the relationship between regional cerebral blood flow (rCBF) change and clinical improvement in patients with Parkinson’s disease (PD). Single-photon emission computed tomography (SPECT) measurement of cerebral blood flow allows evaluation of temporal changes in brain function, and using SPECT, we aimed to identify motor improvement-related rCBF changes in response to the administration of antiparkinsonian drugs. Thirty PD patients (16 without dementia; 14 with dementia) were scanned with technetium-99m labeled ethyl cysteinate dimer SPECT and were rated with the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale part III, both before and after a single administration of antiparkinsonian drugs. The SPECT data were processed using Statistical Parametric Mapping 2, the easy Z-score Imaging System, and voxel-based Stereotactic Extraction Estimation. The rCBF responses in the deep brain structures after administration of antiparkinsonian drugs tended to be larger than those in cortical areas. Among these deep brain structures, the rCBF increases in the substantia nigra (SN), lateral geniculate (LG) body, and medial geniculate (MG) body correlated with drug efficacy (p<0.05, respectively). A subgroup analysis revealed that the motor improvement-related rCBF change in the MG was statistically significant, irrespective of cognitive function, but the significant changes in the LG and SN were not found in subjects with dementia. In conclusion, our SPECT study clearly exhibited drug-driven rCBF changes in PD patients, and we newly identified motor improvement-related rCBF changes in the LG and MG. These results suggest that rCBF changes in these regions could be considered as candidates for clinical indicators for objective evaluation of disease progression. Furthermore, functional studies focusing on the LG and MG, especially in relation to therapies using audio-visual stimuli, may bring some new clues to explain the pathophysiology of PD.


Sign in / Sign up

Export Citation Format

Share Document