An Efficient SRAM-Based Ternary Content Addressable Memory (TCAM) with Soft Error Correction

Author(s):  
Anwesh Varada ◽  
Sonali Agrawal
Author(s):  
Xuehong Wang ◽  
Linfang Wang ◽  
Ye Wang ◽  
Junjie An ◽  
Chunmeng Dou ◽  
...  

2013 ◽  
Vol 373-375 ◽  
pp. 1607-1611
Author(s):  
Hong Gang Zhou ◽  
Shou Biao Tan ◽  
Qiang Song ◽  
Chun Yu Peng

With the scaling of process technologies into the nanometer regime, multiple-bit soft error problem becomes more serious. In order to improve the reliability and yield of SRAM, bit-interleaving architecture which integrated with error correction codes (ECC) is commonly used. However, this leads to the half select problem, which involves two aspects: the half select disturb and the additional power caused by half-selected cells. In this paper, we propose a new 10T cell to allow the bit-interleaving array while completely eliminating the half select problem, thus allowing low-power and low-voltage operation. In addition, the RSNM and WM of our proposed 10T cell are improved by 21% and nearly one times, respectively, as compared to the conventional 6T SRAM cell in SMIC 65nm CMOS technology. We also conduct a comparison with the conventional 6T cell about the leakage simulation results, which show 14% of leakage saving in the proposed 10T cell.


Sign in / Sign up

Export Citation Format

Share Document