Building extraction from high resolution imagery based on multi-scale object oriented classification and probabilistic Hough transform

Author(s):  
Z.J. Liu ◽  
J. Wang ◽  
W.P. Liu
Land ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 193
Author(s):  
Ali Alghamdi ◽  
Anthony R. Cummings

The implications of change on local processes have attracted significant research interest in recent times. In urban settings, green spaces and forests have attracted much attention. Here, we present an assessment of change within the predominantly desert Middle Eastern city of Riyadh, an understudied setting. We utilized high-resolution SPOT 5 data and two classification techniques—maximum likelihood classification and object-oriented classification—to study the changes in Riyadh between 2004 and 2014. Imagery classification was completed with training data obtained from the SPOT 5 dataset, and an accuracy assessment was completed through a combination of field surveys and an application developed in ESRI Survey 123 tool. The Survey 123 tool allowed residents of Riyadh to present their views on land cover for the 2004 and 2014 imagery. Our analysis showed that soil or ‘desert’ areas were converted to roads and buildings to accommodate for Riyadh’s rapidly growing population. The object-oriented classifier provided higher overall accuracy than the maximum likelihood classifier (74.71% and 73.79% vs. 92.36% and 90.77% for 2004 and 2014). Our work provides insights into the changes within a desert environment and establishes a foundation for understanding change in this understudied setting.


2018 ◽  
Vol 10 (11) ◽  
pp. 1768 ◽  
Author(s):  
Hui Yang ◽  
Penghai Wu ◽  
Xuedong Yao ◽  
Yanlan Wu ◽  
Biao Wang ◽  
...  

Building extraction from very high resolution (VHR) imagery plays an important role in urban planning, disaster management, navigation, updating geographic databases, and several other geospatial applications. Compared with the traditional building extraction approaches, deep learning networks have recently shown outstanding performance in this task by using both high-level and low-level feature maps. However, it is difficult to utilize different level features rationally with the present deep learning networks. To tackle this problem, a novel network based on DenseNets and the attention mechanism was proposed, called the dense-attention network (DAN). The DAN contains an encoder part and a decoder part which are separately composed of lightweight DenseNets and a spatial attention fusion module. The proposed encoder–decoder architecture can strengthen feature propagation and effectively bring higher-level feature information to suppress the low-level feature and noises. Experimental results based on public international society for photogrammetry and remote sensing (ISPRS) datasets with only red–green–blue (RGB) images demonstrated that the proposed DAN achieved a higher score (96.16% overall accuracy (OA), 92.56% F1 score, 90.56% mean intersection over union (MIOU), less training and response time and higher-quality value) when compared with other deep learning methods.


Author(s):  
Zhao Sun ◽  
Yifu Wang ◽  
Lei Pan ◽  
Yunhong Xie ◽  
Bo Zhang ◽  
...  

AbstractPine wilt disease (PWD) is currently one of the main causes of large-scale forest destruction. To control the spread of PWD, it is essential to detect affected pine trees quickly. This study investigated the feasibility of using the object-oriented multi-scale segmentation algorithm to identify trees discolored by PWD. We used an unmanned aerial vehicle (UAV) platform equipped with an RGB digital camera to obtain high spatial resolution images, and multi-scale segmentation was applied to delineate the tree crown, coupling the use of object-oriented classification to classify trees discolored by PWD. Then, the optimal segmentation scale was implemented using the estimation of scale parameter (ESP2) plug-in. The feature space of the segmentation results was optimized, and appropriate features were selected for classification. The results showed that the optimal scale, shape, and compactness values of the tree crown segmentation algorithm were 56, 0.5, and 0.8, respectively. The producer’s accuracy (PA), user’s accuracy (UA), and F1 score were 0.722, 0.605, and 0.658, respectively. There were no significant classification errors in the final classification results, and the low accuracy was attributed to the low number of objects count caused by incorrect segmentation. The multi-scale segmentation and object-oriented classification method could accurately identify trees discolored by PWD with a straightforward and rapid processing. This study provides a technical method for monitoring the occurrence of PWD and identifying the discolored trees of disease using UAV-based high-resolution images.


2019 ◽  
Vol 11 (5) ◽  
pp. 482 ◽  
Author(s):  
Qi Bi ◽  
Kun Qin ◽  
Han Zhang ◽  
Ye Zhang ◽  
Zhili Li ◽  
...  

Building extraction plays a significant role in many high-resolution remote sensing image applications. Many current building extraction methods need training samples while it is common knowledge that different samples often lead to different generalization ability. Morphological building index (MBI), representing morphological features of building regions in an index form, can effectively extract building regions especially in Chinese urban regions without any training samples and has drawn much attention. However, some problems like the heavy computation cost of multi-scale and multi-direction morphological operations still exist. In this paper, a multi-scale filtering building index (MFBI) is proposed in the hope of overcoming these drawbacks and dealing with the increasing noise in very high-resolution remote sensing image. The profile of multi-scale average filtering is averaged and normalized to generate this index. Moreover, to fully utilize the relatively little spectral information in very high-resolution remote sensing image, two scenarios to generate the multi-channel multi-scale filtering index (MMFBI) are proposed. While no high-resolution remote sensing image building extraction dataset is open to the public now and the current very high-resolution remote sensing image building extraction datasets usually contain samples from the Northern American or European regions, we offer a very high-resolution remote sensing image building extraction datasets in which the samples contain multiple building styles from multiple Chinese regions. The proposed MFBI and MMFBI outperform MBI and the currently used object based segmentation method on the dataset, with a high recall and F-score. Meanwhile, the computation time of MFBI and MBI is compared on three large-scale very high-resolution satellite image and the sensitivity analysis demonstrates the robustness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document