The AMSR-E Instantaneous Emissivity Estimation and its Correlation, Frequency Dependency Analysis over Different Land Covers

Author(s):  
Yubao Qiu ◽  
Jiancheng Shi ◽  
Martti T. Hallikainen ◽  
Juha Lemmetyinen ◽  
Jouni Pulliainen ◽  
...  
2019 ◽  
Vol 8 (3) ◽  
pp. 789-797
Author(s):  
Nurul Arfah Che Mustapha ◽  
A. H. M. Zahirul Alam ◽  
Sheroz Khan ◽  
Amelia Wong Azman

A differential capacitive sensing technique is discussed in this paper. The differential capacitive sensing circuit is making use of a single power supply. The design focus for this paper is on the excitation frequency dependency analysis to the circuit. Theory of the differential capacitive sensor under test is discussed and derivation is elaborated. Simulation results are shown and discussed. Next, results improvement has also been shown in this paper for comparison. Test was carried out using frequency from 40 kHz up to 400 kHz. Results have shown output voltage of Vout=0.07927 Cx+1.25205 and good linearity of R-squared value 0.99957 at 200 kHz. Potential application for this capacitive sensor is to be used for energy harvesting for its potential power supply.


2014 ◽  
Vol 36 (1) ◽  
pp. 54-62 ◽  
Author(s):  
Tian-Ying LI ◽  
Lin LIU ◽  
De-Wang ZHAO ◽  
Yuan CAO
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Umut D. Çakmak ◽  
Zoltán Major ◽  
Michael Fischlschweiger

In the field of rehabilitation and neuroscience, shape memory alloys play a crucial role as lightweight actuators. Devices are exploiting the shape memory effect by transforming heat into mechanical work. In rehabilitation applications, dynamic loading of the respective device occurs, which in turn influences the mechanical consequences of the phase transforming alloy. Hence in this work, dynamic thermomechanical material behavior of temperature-triggered phase transforming NiTi shape memory alloy (SMA) wires with different chemical compositions and geometries was experimentally investigated. Storage modulus and mechanical loss factor of NiTi alloys at different temperatures and loading frequencies were analyzed under force-controlled conditions. Counterintuitive storage modulus- and loss factor-dependent trends regarding the loading frequency dependency of the mechanical properties on the materials’ composition and geometry were, hence, obtained. It was revealed that loss factors showed a pronounced loading frequency dependency, whereas the storage modulus was not affected. It was shown that force-controlled conditions led to a lower storage modulus than expected. Furthermore, it turned out that a simple empirical relation could capture the characteristic temperature dependency of the storage modulus, which is an important input relation for modeling the rehabilitation device behavior under different dynamic and temperature loading conditions, taking directly into account the material behavior of the shape memory alloy.


2020 ◽  
Vol 13 (1) ◽  
pp. 1-26
Author(s):  
Al-Shahna Jamal ◽  
Eli Cahill ◽  
Jeffrey Goeders ◽  
Steven J. E. Wilton
Keyword(s):  

2021 ◽  
Vol 13 (4) ◽  
pp. 593
Author(s):  
Lorenzo Lastilla ◽  
Valeria Belloni ◽  
Roberta Ravanelli ◽  
Mattia Crespi

DSM generation from satellite imagery is a long-lasting issue and it has been addressed in several ways over the years; however, expert and users are continuously searching for simpler but accurate and reliable software solutions. One of the latest ones is provided by the commercial software Agisoft Metashape (since version 1.6), previously known as Photoscan, which joins other already available open-source and commercial software tools. The present work aims to quantify the potential of the new Agisoft Metashape satellite processing module, considering that to the best knowledge of the authors, only two papers have been published, but none considering cross-sensor imagery. Here we investigated two different case studies to evaluate the accuracy of the generated DSMs. The first dataset consists of a triplet of Pléiades images acquired over the area of Trento and the Adige valley (Northern Italy), which is characterized by a great variety in terms of geomorphology, land uses and land covers. The second consists of a triplet composed of a WorldView-3 stereo pair and a GeoEye-1 image, acquired over the city of Matera (Southern Italy), one of the oldest settlements in the world, with the worldwide famous area of Sassi and a very rugged morphology in the surroundings. First, we carried out the accuracy assessment using the RPCs supplied by the satellite companies as part of the image metadata. Then, we refined the RPCs with an original independent terrain technique able to supply a new set of RPCs, using a set of GCPs adequately distributed across the regions of interest. The DSMs were generated both in a stereo and multi-view (triplet) configuration. We assessed the accuracy and completeness of these DSMs through a comparison with proper references, i.e., DSMs obtained through LiDAR technology. The impact of the RPC refinement on the DSM accuracy is high, ranging from 20 to 40% in terms of LE90. After the RPC refinement, we achieved an average overall LE90 <5.0 m (Trento) and <4.0 m (Matera) for the stereo configuration, and <5.5 m (Trento) and <4.5 m (Matera) for the multi-view (triplet) configuration, with an increase of completeness in the range 5–15% with respect to stereo pairs. Finally, we analyzed the impact of land cover on the accuracy of the generated DSMs; results for three classes (urban, agricultural, forest and semi-natural areas) are also supplied.


2021 ◽  
Vol 13 (5) ◽  
pp. 2865 ◽  
Author(s):  
Sungryong Bae ◽  
Pilkee Kim

In this study, optimization of the external load resistance of a piezoelectric bistable energy harvester was performed for primary harmonic (period-1T) and subharmonic (period-3T) interwell motions. The analytical expression of the optimal load resistance was derived, based on the spectral analyses of the interwell motions, and evaluated. The analytical results are in excellent agreement with the numerical ones. A parametric study shows that the optimal load resistance depended on the forcing frequency, but not the intensity of the ambient vibration. Additionally, it was found that the optimal resistance for the period-3T interwell motion tended to be approximately three times larger than that for the period-1T interwell motion, which means that the optimal resistance was directly affected by the oscillation frequency (or oscillation period) of the motion rather than the forcing frequency. For broadband energy harvesting applications, the subharmonic interwell motion is also useful, in addition to the primary harmonic interwell motion. In designing such piezoelectric bistable energy harvesters, the frequency dependency of the optimal load resistance should be considered properly depending on ambient vibrations.


Sign in / Sign up

Export Citation Format

Share Document