Error entropy model based determination of minimum detactable deformation magnitude of terrestrial laser scanning

Author(s):  
Xijiang Chen ◽  
Kegen Yu
2014 ◽  
Vol 58 (3) ◽  
pp. 115-135 ◽  
Author(s):  
Dirk Hoffmeister ◽  
Konstantin Ntageretzis ◽  
Helge Aasen ◽  
Constanze Curdt ◽  
Hanna Hadler ◽  
...  

2014 ◽  
Vol 58 (1) ◽  
pp. 81-95 ◽  
Author(s):  
Henning Baewert ◽  
Martin Bimböse ◽  
Alexander Bryk ◽  
Eric Rascher ◽  
Karl-Heinz Schmidt ◽  
...  

Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 174 ◽  
Author(s):  
Peter Blistan ◽  
Stanislav Jacko ◽  
Ľudovít Kovanič ◽  
Julián Kondela ◽  
Katarína Pukanská ◽  
...  

A frequently recurring problem in the extraction of mineral resources (especially heterogeneous mineral resources) is the rapid operative determination of the extracted quantity of raw material in a surface quarry. This paper deals with testing and analyzing the possibility of using unconventional methods such as digital close-range photogrammetry and terrestrial laser scanning in the process of determining the bulk density of raw material under in situ conditions. A model example of a heterogeneous deposit is the perlite deposit Lehôtka pod Brehmi (Slovakia). Classical laboratory methods for determining bulk density were used to verify the results of the in situ method of bulk density determination. Two large-scale samples (probes) with an approximate volume of 7 m3 and 9 m3 were realized in situ. 6 point samples (LITH) were taken for laboratory determination. By terrestrial laser scanning (TLS) measurement from 2 scanning stations, point clouds with approximately 163,000/143,000 points were obtained for each probe. For Structure-from-Motion (SfM) photogrammetry, 49/55 images were acquired for both probes, with final point clouds containing approximately 155,000/141,000 points. Subsequently, the bulk densities of the bulk samples were determined by the calculation from in situ measurements by TLS and SfM photogrammetry. Comparison of results of the field in situ measurements (1841 kg∙m−3) and laboratory measurements (1756 kg∙m−3) showed only a 4.5% difference in results between the two methods for determining the density of heterogeneous raw materials, confirming the accuracy of the used in situ methods. For the determination of the loosening coefficient, the material from both large-scale samples was transferred on a horizontal surface. Their volumes were determined by TLS. The loosening coefficient for the raw material of 1.38 was calculated from the resulting values.


2020 ◽  
Vol 53 (3-4) ◽  
pp. 416-426 ◽  
Author(s):  
Hao Yang ◽  
Xiangyang Xu

The hazards of cracks, which could badly decrease reliability and safety of structures, are receiving increasing attention with the popularity of tunnel constructions. Traditional crack inspection relies on visual examination, which is time-, cost- and labor-intensive. Therefore, how to identify and measure cracks intelligently is significantly essential. The paper focuses on the Canny method to extract cracks of tunnel structures by the intensity value of reflectivity. We propose and investigate a novel method which combines dilation and the Canny algorithm to identify and extract the cracks automatically and intelligently based on the point cloud data of terrestrial laser scanning measurement. In order for measurement of cracks, the projection of summed edge pixels is adopted, where a synthesis is carried out on the detection results with all sampling parameters. Based on the synthesized image, vertical crack presents two sharp peaks where the space of the peaks indicates the average width of the crack, as well as its position. The advantage of the method is that it does not require determination of Canny detector parameters. The deviation between manual measurement and Canny detection is 2.92%.


2013 ◽  
Vol 59 (3) ◽  
pp. 6-20
Author(s):  
Ľudovít Kovanič

Abstract This paper presents the results obtained from geodetic measurements and processing the data with the objective to determine geometrical parameters of an elevator shaft applying classical as well as modern approaches for obtaining the measured data. The intention was to verify the possibility to apply the terrestrial laser scanning (TLS) method as a suitable, efficient and precise method for collecting spatial data.


2020 ◽  
Vol 13 (1) ◽  
pp. 31
Author(s):  
Patrycja Wyszkowska ◽  
Robert Duchnowski ◽  
Andrzej Dumalski

This paper presents an application of an Msplit estimation in the determination of terrain profiles from terrestrial laser scanning (TLS) data. We consider the squared Msplit estimation as well as the absolute Msplit estimation. Both variants have never been used to determine terrain profiles from TLS data (the absolute Msplit estimation has never been applied in any TLS data processing). The profiles are computed by applying polynomials of a different degree, determining which coefficients are estimated using the method in question. For comparison purposes, the profiles are also determined by applying a conventional least squares estimation. The analyses are based on simulated as well as real TLS data. The actual objects have been chosen to contain terrain details (or obstacles), which provide some measurements which are not referred to as terrain surface; here, they are regarded as outliers. The empirical tests prove that the proposed approach is efficient and can provide good terrain profiles even if there are outliers in an observation set. The best results are obtained when the absolute Msplit estimation is applied. One can suggest that this method can be used in a vertical displacement analysis in mining damages or ground disasters.


Sign in / Sign up

Export Citation Format

Share Document