Phase calibration of TanDEM-X ATI-SAR data for sea surface velocity measurements

Author(s):  
Anis Elyouncha ◽  
Leif E. B. Eriksson ◽  
Roland Romeiser ◽  
Lars M. H. Ulander
2016 ◽  
Vol 144 (3) ◽  
pp. 1051-1068 ◽  
Author(s):  
Matthew J. Carrier ◽  
Hans E. Ngodock ◽  
Philip Muscarella ◽  
Scott Smith

Abstract The assimilation of surface velocity observations and their impact on the model sea surface height (SSH) is examined using an operational regional ocean model and its four-dimensional variational data assimilation (4DVAR) analysis component. In this work, drifter-derived surface velocity observations are assimilated into the Navy’s Coastal Ocean Model (NCOM) 4DVAR in weak-constraint mode for a Gulf of Mexico (GoM) experiment during August–September 2012. During this period the model is trained by assimilating surface velocity observations (in a series of 96-h assimilation windows), which is followed by a 30-day forecast through the month of October 2012. A free-run model and a model that assimilates along-track SSH observations are also run as baseline experiments to which the other experiments are compared. It is shown here that the assimilation of surface velocity measurements has a substantial impact on improving the model representation of the forecast SSH on par with the experiment that assimilates along-track SSH observations directly. Finally, an assimilation experiment is done where both along-track SSH and velocity observations are utilized in an attempt to determine if the observation types are redundant or complementary. It is found that the combination of observations provides the best SSH forecast, in terms of the fit to observations, when compared to the previous experiments.


1993 ◽  
Vol 2 (3) ◽  
pp. 169-187
Author(s):  
Masahisa Kubota ◽  
Masatsune Shirota

2021 ◽  
Author(s):  
Anis Elyouncha ◽  
Leif E. B. Eriksson

<p><span>Synthetic aperture radar (SAR) has become an essential component in ocean remote sensing due it’s </span><span>high</span> <span>sensitivity</span><span> to sea surface dynamics and its high spatial resolution. </span><span>The ALOS-</span><span>2 SAR</span><span> data are </span> underutilized <span>for</span><span> ocean surface wind and current retrieval. Althou</span><span>g</span><span>h the primary goals of the </span><span>ALOS-2</span><span> mission are focused on land applications, the extension of the satellite scenes over the coast</span><span>al areas</span><span> offers an opportunity for ocean applications. Th</span><span>e</span><span> underutilization </span><span>of ALOS-2 data </span><span>is mainly due to the fact that at low radar frequencies, e.g. L-band, the sensitivity of the radar scattering coefficient to wind speed and the sensitivity of the Doppler frequency shift to sea surface velocity is lower than at higher frequencies, e.g. C- </span><span>and</span><span> X-</span><span>band</span><span>. </span><span>This is also due to the fact that most of ALOS-2 images are acquired in HH or HV polarization while the VV polarization is often preferred in ocean applications due the higher signal to noise ratio. </span></p><p>The wind speed is retrieved from Sentinel-1 and ALOS-2 using the existing empirical C- and L-band geophysical model functions. For Sentinel-1, the Doppler frequency shift provided in the OCN product is used. For ALOS-2, the Doppler frequency shift is estimated from the single look complex data using the pulse-pair processing method. The estimated Doppler shift converted to the surface radial velocity and the velocity is calibrated using land as a reference. The estimated L-band Doppler shift and surface velocity is compared to the C-band Doppler shift provided in the Sentinel-1 OCN product. Due the difference in the local time of ascending node (about 6 hours at the equator) of the two satellites, a direct pixel-by-pixel comparison is not possible, i.e. the wind and surface current can not be assumed to be constant during such a large time difference. Thus, the retrieved wind from each sensor is compared separately to model data and in-situ observations.</p><p>In this paper, the quality of the wind speed retrieved from the L-band SAR (ALOS-2) in coastal areas is assessed and compared to the C-band SAR (Sentinel-1). In addition, the feasibility of the surface current retrieval from the L-band Doppler frequency shift is investigated and also compared to Sentinel-1. Examples will be shown and discussed. This opens an opportunity for synergy between L-band and C-band SAR missions to increase the spatial and temporal coverage, which is one of the main limitations of SAR application in ocean remote sensing.</p>


Author(s):  
David E. Montgomery ◽  
Robert L. West

Abstract Experimental spatial dynamics modeling involves using scanning lasers to sample surface shape and dynamic response of structures in order to verify structural dynamics design intent. Formation of accurate spatial models from laser-based measurements requires that laser position and orientation be registered relative to a fixed coordinate system. A three point direct registration procedure is defined for shape modeling using laser range and mirror deflection angles. Surface velocity measurements with a portable laser Doppler vibrometer (LDV) also require registration, but range information is unavailable. A multiple point indirect registration algorithm for the LDV is described that involves minimizing three nonlinear equations. A simulated laser rangefinder (LRF) was developed for demonstrating three point direct registration. The 3-D geometry of a compressor housing was modeled by combining range data from multiple laser positions. The multiple point indirect registration was applied to 3-D velocity response field reconstruction of a composite plate from velocity measurements scanned at three separate positions.


2019 ◽  
Vol 11 (12) ◽  
pp. 1491 ◽  
Author(s):  
Naokazu Taniguchi ◽  
Shinichiro Kida ◽  
Yuji Sakuno ◽  
Hidemi Mutsuda ◽  
Fadli Syamsudin

Spatial and temporal information on oceanic flow is fundamental to oceanography and crucial for marine-related social activities. This study attempts to describe the short-term surface flow variation in the area south of the Lombok Strait in the northern summer using the hourly Himawari-8 sea surface temperature (SST). Although the uncertainty of this temperature is relatively high (about 0.6 ∘ C), it could be used to discuss the flow variation with high spatial resolution because sufficient SST differences are found between the areas north and south of the strait. The maximum cross-correlation (MCC) method is used to estimate the surface velocity. The Himawari-8 SST clearly shows Flores Sea water intruding into the Indian Ocean with the high-SST water forming a warm thermal plume on a tidal cycle. This thermal plume flows southward at a speed of about 2 m / s . The Himawari-8 SST indicates a southward flow from the Lombok Strait to the Indian Ocean, which blocks the South Java Current flowing eastward along the southern coast of Nusa Tenggara. Although the satellite data is limited to the surface, we found it useful for understanding the spatial and temporal variations in the surface flow field.


2003 ◽  
Vol 14 (4) ◽  
pp. 359-365 ◽  
Author(s):  
Rune S. Ødegård ◽  
Ketil Isaksen ◽  
Trond Eiken ◽  
Johan Ludvig Sollid

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
А. P. Tolstosheev ◽  
E. G. Lunev ◽  
S. V. Motyzhev ◽  
V. Z. Dykman ◽  
◽  
...  

Purpose. Reliability of knowledge about the ocean dynamics and climate variability is largely limited for lack of systematic in situ observations of the sea surface layer salinity, which is one of the basic hydrological parameters determining circulation and stratification of the water masses. The study is aimed at developing an autonomous device for long-term monitoring of salinity in the seawater upper layer. Methods and Results. One of the most effective tools for in situ observations of the ocean upper layer is the global network of surface drifting buoys – drifters. At present, the network consists of more than 1500 buoys, but only a few of them provide sea surface salinity observations within the framework of a limited number of pilot experiments. In the drifters, salinity is calculated by the traditional method using the results of the electrical conductivity and temperature measurements. There are a few problems related both to the principle of determining salinity by this method and to providing long-term stable running of conductivity sensors under the conditions of pollution and biological fouling. A drifter equipped with the module for the sound velocity and temperature measurements used for calculating salinity by an alternative method just aboard the drifter, was developed in Marine Hydrophysical Institute, Russian Academy of Sciences. The sound velocity and temperature module includes a specially designed time-of-flight sound velocity sensor with the fixed base and a quartz temperature sensor. In course of two years, numerous laboratory and in situ tests of several prototypes of the sound velocity and temperature module were performed. The laboratory tests showed that the repeatability limits for the results of the sound velocity measurements in the distilled water were 0.02 m/s. According to the data of the long-term in situ tests performed at intensive biological fouling, the error of salinity estimation resulted from of the sound velocity and temperature measurements were within 0.05 ‰. This result permits to expect that the sound velocity and temperature module parameters will remain stable in real conditions of long-term autonomous operation. Conclusions. The obtained results make it possible to recommend application of the drifters equipped with the modules for the sound velocity and temperature measurements as an effective tool for regular operational monitoring of the salinity field of the upper sea layer.


Sign in / Sign up

Export Citation Format

Share Document