Estimation of Directional Surface Reflectance and Atmospheric Aerosols Over East Asia Using a Multi-Channel Geostationary Satellite

Author(s):  
Kwon-Ho Lee ◽  
Jung-Moon Yoo ◽  
Man-Sing Wong
Eos ◽  
2011 ◽  
Vol 92 (23) ◽  
pp. 200-200
Author(s):  
Ernie Tretkoff

2019 ◽  
Vol 11 (24) ◽  
pp. 2990 ◽  
Author(s):  
Shuang Li ◽  
Weile Wang ◽  
Hirofumi Hashimoto ◽  
Jun Xiong ◽  
Thomas Vandal ◽  
...  

A provisional surface reflectance (SR) product from the Advanced Himawari Imager (AHI) on-board the new generation geostationary satellite (Himawari-8) covering the period between July 2015 and December 2018 is made available to the scientific community. The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is used in conjunction with time series Himawari-8 AHI observations to generate 1-km gridded and tiled land SR every 10 minutes during day time. This Himawari-8 AHI SR product includes retrieved atmospheric properties (e.g., aerosol optical depth at 0.47µm and 0.51µm), spectral surface reflectance (AHI bands 1–6), parameters of the RTLS BRDF model, and quality assurance flags. Product evaluation shows that Himawari-8 AHI data on average yielded 35% more cloud-free, valid pixels in a single day when compared to available data from the low earth orbit (LEO) satellites Terra/Aqua with MODIS sensor. Comparisons of Himawari-8 AHI SR against corresponding MODIS SR products (MCD19A1) over a variety of land cover types with the similar viewing geometry show high consistency between them, with correlation coefficients (r) being 0.94 and 0.99 for red and NIR bands, respectively. The high-frequency geostationary data are expected to facilitate studies of ecosystems on daily to diurnal time scales, complementing observations from networks such as the FLUXNET.


2013 ◽  
Vol 79 ◽  
pp. 802-810 ◽  
Author(s):  
Yong-Liang Yang ◽  
Nan Gai ◽  
Cun-Zhen Geng ◽  
Xiao-Hua Zhu ◽  
Yong Li ◽  
...  

2017 ◽  
Vol 17 (7) ◽  
pp. 4673-4686 ◽  
Author(s):  
Hyeong-Ahn Kwon ◽  
Rokjin J. Park ◽  
Jaein I. Jeong ◽  
Seungun Lee ◽  
Gonzalo González Abad ◽  
...  

Abstract. We examine upcoming geostationary satellite observations of formaldehyde (HCHO) vertical column densities (VCDs) in East Asia and the retrieval sensitivity to the temporal variation of air mass factors (AMFs) considering the presence of aerosols. Observation system simulation experiments (OSSE) were conducted using a combination of a global 3-D chemical transport model (GEOS-Chem), a radiative transfer model (VLIDORT), and a HCHO retrieval algorithm developed for the Geostationary Environment Monitoring Spectrometer (GEMS), which will be launched in 2019. Application of the retrieval algorithm to simulated hourly radiances yields the retrieved HCHO VCDs, which are then compared with the GEOS-Chem HCHO VCDs as true values for the evaluation of the retrieval algorithm. In order to examine the retrieval sensitivity to the temporal variation of AMF, we examine three AMF specifications, AMFm, AMFh, and AMFmh, using monthly, hourly, and monthly mean hourly input data for their calculation, respectively. We compare the retrieved HCHO VCDs using those three AMFs and find that the HCHO VCDs with AMFh are in better agreement with the true values than the results using AMFmh and AMFm. AMFmh reflects diurnal variation of planetary boundary layer and other meteorological parameters, so that the results with AMFmh show a better performance than those with AMFm. The differences between AMFh and AMFm range from −0.76 to 0.74 in absolute value and are mainly caused by temporal changes in aerosol chemical compositions and aerosol vertical distributions, which result in −27 to 58 and −34 to 43 % changes in HCHO VCDs over China, respectively, compared to HCHO VCDs using AMFm. We apply our calculated AMF table together with OMI aerosol optical properties to OMI HCHO products in March 2006, when Asian dust storms occurred, and find −32 to 47 % changes in the retrieved HCHO columns due to temporal changes in aerosol optical properties in East Asia. The impact of aerosol temporal variability cannot be neglected for future geostationary observations.


2021 ◽  
Author(s):  
Juwon Kong ◽  
Youngryel Ryu ◽  
Sungchan Jeong ◽  
Wonseok Choi ◽  
Henock Mamo

2017 ◽  
Author(s):  
Myungje Choi ◽  
Jhoon Kim ◽  
Jaehwa Lee ◽  
Mijin Kim ◽  
Young-je Park ◽  
...  

Abstract. The Geostationary Ocean Color Imager (GOCI) Yonsei aerosol retrieval (YAER) version 1 algorithm was developed for retrieving hourly aerosol optical depth at 550 nm (AOD) and other subsidiary aerosol optical properties over East Asia. The GOCI YAER AOD showed comparable accuracy compared to ground-based and other satellite-based observations, but still had errors due to uncertainties in surface reflectance and simple cloud masking. Also, it was not capable of near-real-time (NRT) processing because it required a monthly database of each year encompassing the day of retrieval for the determination of surface reflectance. This study describes the improvement of GOCI YAER algorithm to the version 2 (V2) for NRT processing with improved accuracy from the modification of cloud masking, surface reflectance determination using multi-year Rayleigh corrected reflectance and wind speed database, and inversion channels per surface conditions. Therefore, the improved GOCI AOD (τG) is similar with those of Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) AOD compared to V1 of the YAER algorithm. The τG shows reduced median bias and increased ratio within 0.15τA+0.05 range (i.e. absolute expected error range of MODIS AOD) compared to V1 in the validation results using Aerosol Robotic Network (AERONET) AOD (τA) from 2011 to 2016. The validation using the Sun-Sky Radiometer Observation Network (SONET) over China also shows similar results. The bias of error (τG-τA) is within −0.1 and 0.1 range as a function of AERONET AOD and AE, scattering angle, NDVI, cloud fraction and homogeneity of retrieved AOD, observation time, month, and year. Also, the diagnostic and prognostic expected error (DEE and PEE, respectively) of τG are estimated. The estimated multiple PEE of GOCI V2 AOD is well matched with actual error over East Asia, and the GOCI V2 AOD over Korea shows higher ratio within PEE compared to over China and Japan.


Sign in / Sign up

Export Citation Format

Share Document