Face Image Feature Selection Based on Gabor Feature and Recursive Feature Elimination

Author(s):  
Xianqiang Lv ◽  
Junfeng Wu ◽  
Wei Liu
2013 ◽  
Vol 432 ◽  
pp. 587-591 ◽  
Author(s):  
Yang Meng Tian ◽  
Yu Duo Zheng ◽  
Wei Jin ◽  
Gai Hong Du

In order to solve the problem of face recognition, the method of feature extraction and feature selection is presented in this paper. First using Gabor filters and face image as the convolution Operator to extract the Gabor feature vector of the image and also to uniform sampling; then using the PCA + LDA method to reduce the dimension for high-dimensional Gabor feature vector; Finally, using the nearest neighbor classifier to discriminate and determine the identity of a face image. The result I get is that the sampled Gabor feature in high-dimensional space can be projected onto low-dimensional space though the method of feature selection and compression. The new and original in this paper is that the method of PCA + LDA overcomes the problem of the spread matrix singular in the class and matrix too large which is brought by directly use the LDA.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Nicholas Nuechterlein ◽  
Beibin Li ◽  
Abdullah Feroze ◽  
Eric C Holland ◽  
Linda Shapiro ◽  
...  

Abstract Background Combined whole-exome sequencing (WES) and somatic copy number alteration (SCNA) information can separate isocitrate dehydrogenase (IDH)1/2-wildtype glioblastoma into two prognostic molecular subtypes, which cannot be distinguished by epigenetic or clinical features. The potential for radiographic features to discriminate between these molecular subtypes has yet to be established. Methods Radiologic features (n = 35 340) were extracted from 46 multisequence, pre-operative magnetic resonance imaging (MRI) scans of IDH1/2-wildtype glioblastoma patients from The Cancer Imaging Archive (TCIA), all of whom have corresponding WES/SCNA data. We developed a novel feature selection method that leverages the structure of extracted MRI features to mitigate the dimensionality challenge posed by the disparity between a large number of features and the limited patients in our cohort. Six traditional machine learning classifiers were trained to distinguish molecular subtypes using our feature selection method, which was compared to least absolute shrinkage and selection operator (LASSO) feature selection, recursive feature elimination, and variance thresholding. Results We were able to classify glioblastomas into two prognostic subgroups with a cross-validated area under the curve score of 0.80 (±0.03) using ridge logistic regression on the 15-dimensional principle component analysis (PCA) embedding of the features selected by our novel feature selection method. An interrogation of the selected features suggested that features describing contours in the T2 signal abnormality region on the T2-weighted fluid-attenuated inversion recovery (FLAIR) MRI sequence may best distinguish these two groups from one another. Conclusions We successfully trained a machine learning model that allows for relevant targeted feature extraction from standard MRI to accurately predict molecularly-defined risk-stratifying IDH1/2-wildtype glioblastoma patient groups.


2006 ◽  
Vol 04 (06) ◽  
pp. 1159-1179 ◽  
Author(s):  
JUNG HUN OH ◽  
ANIMESH NANDI ◽  
PREM GURNANI ◽  
LYNNE KNOWLES ◽  
JOHN SCHORGE ◽  
...  

Ovarian cancer recurs at the rate of 75% within a few months or several years later after therapy. Early recurrence, though responding better to treatment, is difficult to detect. Surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry has showed the potential to accurately identify disease biomarkers to help early diagnosis. A major challenge in the interpretation of SELDI-TOF data is the high dimensionality of the feature space. To tackle this problem, we have developed a multi-step data processing method composed of t-test, binning and backward feature selection. A new algorithm, support vector machine-Markov blanket/recursive feature elimination (SVM-MB/RFE) is presented for the backward feature selection. This method is an integration of minimum weight feature elimination by SVM-RFE and information theory based redundant/irrelevant feature removal by Markov Blanket. Subsequently, SVM was used for classification. We conducted the biomarker selection algorithm on 113 serum samples to identify early relapse from ovarian cancer patients after primary therapy. To validate the performance of the proposed algorithm, experiments were carried out in comparison with several other feature selection and classification algorithms.


2020 ◽  
Vol 2 (1) ◽  
pp. 62
Author(s):  
Luis F. Villamil-Cubillos ◽  
Jersson X. Leon-Medina ◽  
Maribel Anaya ◽  
Diego A. Tibaduiza

An electronic tongue is a device composed of a sensor array that takes advantage of the cross sensitivity property of several sensors to perform classification and quantification in liquid substances. In practice, electronic tongues generate a large amount of information that needs to be correctly analyzed, to define which interactions and features are more relevant to distinguish one substance from another. This work focuses on implementing and validating feature selection methodologies in the liquid classification process of a multifrequency large amplitude pulse voltammetric (MLAPV) electronic tongue. Multi-layer perceptron neural network (MLP NN) and support vector machine (SVM) were used as supervised machine learning classifiers. Different feature selection techniques were used, such as Variance filter, ANOVA F-value, Recursive Feature Elimination and model-based selection. Both 5-fold Cross validation and GridSearchCV were used in order to evaluate the performance of the feature selection methodology by testing various configurations and determining the best one. The methodology was validated in an imbalanced MLAPV electronic tongue dataset of 13 different liquid substances, reaching a 93.85% of classification accuracy.


2020 ◽  
pp. 3397-3407
Author(s):  
Nur Syafiqah Mohd Nafis ◽  
Suryanti Awang

Text documents are unstructured and high dimensional. Effective feature selection is required to select the most important and significant feature from the sparse feature space. Thus, this paper proposed an embedded feature selection technique based on Term Frequency-Inverse Document Frequency (TF-IDF) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) for unstructured and high dimensional text classificationhis technique has the ability to measure the feature’s importance in a high-dimensional text document. In addition, it aims to increase the efficiency of the feature selection. Hence, obtaining a promising text classification accuracy. TF-IDF act as a filter approach which measures features importance of the text documents at the first stage. SVM-RFE utilized a backward feature elimination scheme to recursively remove insignificant features from the filtered feature subsets at the second stage. This research executes sets of experiments using a text document retrieved from a benchmark repository comprising a collection of Twitter posts. Pre-processing processes are applied to extract relevant features. After that, the pre-processed features are divided into training and testing datasets. Next, feature selection is implemented on the training dataset by calculating the TF-IDF score for each feature. SVM-RFE is applied for feature ranking as the next feature selection step. Only top-rank features will be selected for text classification using the SVM classifier. Based on the experiments, it shows that the proposed technique able to achieve 98% accuracy that outperformed other existing techniques. In conclusion, the proposed technique able to select the significant features in the unstructured and high dimensional text document.


Author(s):  
Abbas F. H. Alharan ◽  
Hayder K. Fatlawi ◽  
Nabeel Salih Ali

<p>Computer vision and pattern recognition applications have been counted serious research trends in engineering technology and scientific research content. These applications such as texture image analysis and its texture feature extraction. Several studies have been done to obtain accurate results in image feature extraction and classifications, but most of the extraction and classification studies have some shortcomings. Thus, it is substantial to amend the accuracy of the classification via minify the dimension of feature sets. In this paper, presents a cluster-based feature selection approach to adopt more discriminative subset texture features based on three different texture image datasets. Multi-step are conducted to implement the proposed approach. These steps involve texture feature extraction via Gray Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP) and Gabor filter. The second step is feature selection by using K-means clustering algorithm based on five feature evaluation metrics which are infogain, Gain ratio, oneR, ReliefF, and symmetric. Finally, K-Nearest Neighbor (KNN), Naive Bayes (NB) and Support Vector Machine (SVM) classifiers are used to evaluate the proposed classification performance and accuracy. Research achieved better classification accuracy and performance using KNN and NB classifiers that were 99.9554% for Kelberg dataset and 99.0625% for SVM in Brodatz-1 and Brodatz-2 datasets consecutively. Conduct a comparison to other studies to give a unified view of the quality of the results and identify the future research directions.</p>


2021 ◽  
Vol 335 ◽  
pp. 04001
Author(s):  
Didar Dadebayev ◽  
Goh Wei Wei ◽  
Tan Ee Xion

Emotion recognition, as a branch of affective computing, has attracted great attention in the last decades as it can enable more natural brain-computer interface systems. Electroencephalography (EEG) has proven to be an effective modality for emotion recognition, with which user affective states can be tracked and recorded, especially for primitive emotional events such as arousal and valence. Although brain signals have been shown to correlate with emotional states, the effectiveness of proposed models is somewhat limited. The challenge is improving accuracy, while appropriate extraction of valuable features might be a key to success. This study proposes a framework based on incorporating fractal dimension features and recursive feature elimination approach to enhance the accuracy of EEG-based emotion recognition. The fractal dimension and spectrum-based features to be extracted and used for more accurate emotional state recognition. Recursive Feature Elimination will be used as a feature selection method, whereas the classification of emotions will be performed by the Support Vector Machine (SVM) algorithm. The proposed framework will be tested with a widely used public database, and results are expected to demonstrate higher accuracy and robustness compared to other studies. The contributions of this study are primarily about the improvement of the EEG-based emotion classification accuracy. There is a potential restriction of how generic the results can be as different EEG dataset might yield different results for the same framework. Therefore, experimenting with different EEG dataset and testing alternative feature selection schemes can be very interesting for future work.


Sign in / Sign up

Export Citation Format

Share Document