scholarly journals Evaluation of Feature Selection Techniques in a Multifrequency Large Amplitude Pulse Voltammetric Electronic Tongue

2020 ◽  
Vol 2 (1) ◽  
pp. 62
Author(s):  
Luis F. Villamil-Cubillos ◽  
Jersson X. Leon-Medina ◽  
Maribel Anaya ◽  
Diego A. Tibaduiza

An electronic tongue is a device composed of a sensor array that takes advantage of the cross sensitivity property of several sensors to perform classification and quantification in liquid substances. In practice, electronic tongues generate a large amount of information that needs to be correctly analyzed, to define which interactions and features are more relevant to distinguish one substance from another. This work focuses on implementing and validating feature selection methodologies in the liquid classification process of a multifrequency large amplitude pulse voltammetric (MLAPV) electronic tongue. Multi-layer perceptron neural network (MLP NN) and support vector machine (SVM) were used as supervised machine learning classifiers. Different feature selection techniques were used, such as Variance filter, ANOVA F-value, Recursive Feature Elimination and model-based selection. Both 5-fold Cross validation and GridSearchCV were used in order to evaluate the performance of the feature selection methodology by testing various configurations and determining the best one. The methodology was validated in an imbalanced MLAPV electronic tongue dataset of 13 different liquid substances, reaching a 93.85% of classification accuracy.

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Kaushalya Dissanayake ◽  
Md Gapar Md Johar

Heart disease is recognized as one of the leading factors of death rate worldwide. Biomedical instruments and various systems in hospitals have massive quantities of clinical data. Therefore, understanding the data related to heart disease is very important to improve prediction accuracy. This article has conducted an experimental evaluation of the performance of models created using classification algorithms and relevant features selected using various feature selection approaches. For results of the exploratory analysis, ten feature selection techniques, i.e., ANOVA, Chi-square, mutual information, ReliefF, forward feature selection, backward feature selection, exhaustive feature selection, recursive feature elimination, Lasso regression, and Ridge regression, and six classification approaches, i.e., decision tree, random forest, support vector machine, K-nearest neighbor, logistic regression, and Gaussian naive Bayes, have been applied to Cleveland heart disease dataset. The feature subset selected by the backward feature selection technique has achieved the highest classification accuracy of 88.52%, precision of 91.30%, sensitivity of 80.76%, and f-measure of 85.71% with the decision tree classifier.


2006 ◽  
Vol 04 (06) ◽  
pp. 1159-1179 ◽  
Author(s):  
JUNG HUN OH ◽  
ANIMESH NANDI ◽  
PREM GURNANI ◽  
LYNNE KNOWLES ◽  
JOHN SCHORGE ◽  
...  

Ovarian cancer recurs at the rate of 75% within a few months or several years later after therapy. Early recurrence, though responding better to treatment, is difficult to detect. Surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry has showed the potential to accurately identify disease biomarkers to help early diagnosis. A major challenge in the interpretation of SELDI-TOF data is the high dimensionality of the feature space. To tackle this problem, we have developed a multi-step data processing method composed of t-test, binning and backward feature selection. A new algorithm, support vector machine-Markov blanket/recursive feature elimination (SVM-MB/RFE) is presented for the backward feature selection. This method is an integration of minimum weight feature elimination by SVM-RFE and information theory based redundant/irrelevant feature removal by Markov Blanket. Subsequently, SVM was used for classification. We conducted the biomarker selection algorithm on 113 serum samples to identify early relapse from ovarian cancer patients after primary therapy. To validate the performance of the proposed algorithm, experiments were carried out in comparison with several other feature selection and classification algorithms.


Author(s):  
VLADIMIR NIKULIN ◽  
TIAN-HSIANG HUANG ◽  
GEOFFREY J. MCLACHLAN

The method presented in this paper is novel as a natural combination of two mutually dependent steps. Feature selection is a key element (first step) in our classification system, which was employed during the 2010 International RSCTC data mining (bioinformatics) Challenge. The second step may be implemented using any suitable classifier such as linear regression, support vector machine or neural networks. We conducted leave-one-out (LOO) experiments with several feature selection techniques and classifiers. Based on the LOO evaluations, we decided to use feature selection with the separation type Wilcoxon-based criterion for all final submissions. The method presented in this paper was tested successfully during the RSCTC data mining Challenge, where we achieved the top score in the Basic track.


: In this era of Internet, the issue of security of information is at its peak. One of the main threats in this cyber world is phishing attacks which is an email or website fraud method that targets the genuine webpage or an email and hacks it without the consent of the end user. There are various techniques which help to classify whether the website or an email is legitimate or fake. The major contributors in the process of detection of these phishing frauds include the classification algorithms, feature selection techniques or dataset preparation methods and the feature extraction that plays an important role in detection as well as in prevention of these attacks. This Survey Paper studies the effect of all these contributors and the approaches that are applied in the study conducted on the recent papers. Some of the classification algorithms that are implemented includes Decision tree, Random Forest , Support Vector Machines, Logistic Regression , Lazy K Star, Naive Bayes and J48 etc.


2020 ◽  
pp. 3397-3407
Author(s):  
Nur Syafiqah Mohd Nafis ◽  
Suryanti Awang

Text documents are unstructured and high dimensional. Effective feature selection is required to select the most important and significant feature from the sparse feature space. Thus, this paper proposed an embedded feature selection technique based on Term Frequency-Inverse Document Frequency (TF-IDF) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) for unstructured and high dimensional text classificationhis technique has the ability to measure the feature’s importance in a high-dimensional text document. In addition, it aims to increase the efficiency of the feature selection. Hence, obtaining a promising text classification accuracy. TF-IDF act as a filter approach which measures features importance of the text documents at the first stage. SVM-RFE utilized a backward feature elimination scheme to recursively remove insignificant features from the filtered feature subsets at the second stage. This research executes sets of experiments using a text document retrieved from a benchmark repository comprising a collection of Twitter posts. Pre-processing processes are applied to extract relevant features. After that, the pre-processed features are divided into training and testing datasets. Next, feature selection is implemented on the training dataset by calculating the TF-IDF score for each feature. SVM-RFE is applied for feature ranking as the next feature selection step. Only top-rank features will be selected for text classification using the SVM classifier. Based on the experiments, it shows that the proposed technique able to achieve 98% accuracy that outperformed other existing techniques. In conclusion, the proposed technique able to select the significant features in the unstructured and high dimensional text document.


2021 ◽  
Vol 335 ◽  
pp. 04001
Author(s):  
Didar Dadebayev ◽  
Goh Wei Wei ◽  
Tan Ee Xion

Emotion recognition, as a branch of affective computing, has attracted great attention in the last decades as it can enable more natural brain-computer interface systems. Electroencephalography (EEG) has proven to be an effective modality for emotion recognition, with which user affective states can be tracked and recorded, especially for primitive emotional events such as arousal and valence. Although brain signals have been shown to correlate with emotional states, the effectiveness of proposed models is somewhat limited. The challenge is improving accuracy, while appropriate extraction of valuable features might be a key to success. This study proposes a framework based on incorporating fractal dimension features and recursive feature elimination approach to enhance the accuracy of EEG-based emotion recognition. The fractal dimension and spectrum-based features to be extracted and used for more accurate emotional state recognition. Recursive Feature Elimination will be used as a feature selection method, whereas the classification of emotions will be performed by the Support Vector Machine (SVM) algorithm. The proposed framework will be tested with a widely used public database, and results are expected to demonstrate higher accuracy and robustness compared to other studies. The contributions of this study are primarily about the improvement of the EEG-based emotion classification accuracy. There is a potential restriction of how generic the results can be as different EEG dataset might yield different results for the same framework. Therefore, experimenting with different EEG dataset and testing alternative feature selection schemes can be very interesting for future work.


Author(s):  
Yuta Maeda ◽  
Yoshiko Yamanaka ◽  
Takeo Ito ◽  
Shinichiro Horikawa

Summary We propose a new algorithm, focusing on spatial amplitude patterns, to automatically detect volcano seismic events from continuous waveforms. Candidate seismic events are detected based on signal-to-noise ratios. The algorithm then utilizes supervised machine learning to classify the existing candidate events into true and false categories. The input learning data are the ratios of the number of time samples with amplitudes greater than the background noise level at 1 s intervals (large amplitude ratios) given at every station site, and a manual classification table in which ‘true'' or ‘false'' flags are assigned to candidate events. A two-step approach is implemented in our procedure. First, using the large amplitude ratios at all stations, a neural network model representing a continuous spatial distribution of large amplitude probabilities is investigated at 1 s intervals. Second, several features are extracted from these spatial distributions, and a relation between the features and classification to true and false events is learned by a support vector machine. This two-step approach is essential to account for temporal loss of data, or station installation, movement, or removal. We evaluated the algorithm using data from Mt. Ontake, Japan, during the first ten days of a dense observation trial in the summit region (November 1–10, 2017). Results showed a classification accuracy of more than 97 per cent.


Information ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 16 ◽  
Author(s):  
Sattam Almatarneh ◽  
Pablo Gamallo

In this paper, we examine the performance of several classifiers in the process of searching for very negative opinions. More precisely, we do an empirical study that analyzes the influence of three types of linguistic features (n-grams, word embeddings, and polarity lexicons) and their combinations when they are used to feed different supervised machine learning classifiers: Naive Bayes (NB), Decision Tree (DT), and Support Vector Machine (SVM). The experiments we have carried out show that SVM clearly outperforms NB and DT in all datasets by taking into account all features individually as well as their combinations.


2020 ◽  
Vol 14 (3) ◽  
pp. 269-279
Author(s):  
Hayet Djellali ◽  
Nacira Ghoualmi-Zine ◽  
Souad Guessoum

This paper investigates feature selection methods based on hybrid architecture using feature selection algorithm called Adapted Fast Correlation Based Feature selection and Support Vector Machine Recursive Feature Elimination (AFCBF-SVMRFE). The AFCBF-SVMRFE has three stages and composed of SVMRFE embedded method with Correlation based Features Selection. The first stage is the relevance analysis, the second one is a redundancy analysis, and the third stage is a performance evaluation and features restoration stage. Experiments show that the proposed method tested on different classifiers: Support Vector Machine SVM and K nearest neighbors KNN provide a best accuracy on various dataset. The SVM classifier outperforms KNN classifier on these data. The AFCBF-SVMRFE outperforms FCBF multivariate filter, SVMRFE, Particle swarm optimization PSO and Artificial bees colony ABC.


2012 ◽  
Vol 433-440 ◽  
pp. 6527-6533 ◽  
Author(s):  
S. Harikrishna ◽  
M.A.H. Farquad ◽  
Shabana

Credit Scoring is the use of statistical/intelligent models to transform relevant data into numerical measures that guide the management and decision makers to make decisions such as accept/reject, pricing, pay/no pay and collections. This study focuses on predicting whether a credit applicant can be categorized as good or bad from the supplied data. Many researchers have recently worked on an ensemble of classifiers for such problems. It is observed from the literature that feature selection reduces the complexity of the system and improves the accuracy as well. Efficiency of SVM for feature selection and as a classifier in tandem and its application to credit scoring is analyzed in this paper. During the first step, SVM-RFE (Recursive Feature Elimination) is employed for feature selection and during the second step various architectures of SVM viz., Standard SVM, PSO-SVM and EVO-SVM are employed for classification purpose. The effectiveness of various approaches tested are evaluated using UK credit data and German credit data. It is observed that feature selection using SVM-RFE not only simplifies the process of credit scoring but also improves the accuracy of the system.


Sign in / Sign up

Export Citation Format

Share Document