Barrier/seed layer requirements for copper interconnects

Author(s):  
S.S. Wong ◽  
C. Ryu ◽  
H. Lee ◽  
A.L.S. Loke ◽  
K.-W. Kwon ◽  
...  
2001 ◽  
Vol 714 ◽  
Author(s):  
Thierry Berger ◽  
Lucile Arnaud ◽  
Gérard Tartavel ◽  
Gérard Lormand

ABSTRACTWe have characterized the electromigration performance of copper damascene interconnects using moderately and highly accelerated lifetime tests respectively at package and wafer level. Two metallizations have been studied: Chemical Vapor Deposition (CVD) copper deposited on CVD TiN (Process A) and electroplated (ECD) copper deposited on CVD TiN using 90 nm of CVD copper as a seed-layer (Process B). All metallizations were passivated with SiO2. Two line widths have been characterized: 0.6μm and 4μm.For wide lines, we obtained similar activation energies (Ea) for both metallizations (0.63 for process A and 0.65 eV for process B). For narrow lines, the Ea value is 0.8eV for CVD copper whereas it is higher than 1eV for ECD copper. For wide lines of both metallizations, failure analysis performed with a Scanning Electron Microscope (SEM) gave clear evidences that microstructural gradients have a strong impact on voids and extrusions formation (i.e. that grain boundaries are an active diffusion path in spite of low Ea values). For narrow lines, diffusion at the upper interface is believed to be the main diffusion path.From the reliability point of view, the extrapolated lifetimes of the metallization including ECD copper are much higher (1 to 2 orders of magnitude depending on the line width) than for CVD copper.


Author(s):  
Henry Wojcik ◽  
David Lehninger ◽  
Volker Neumann ◽  
Johann W. Bartha

2020 ◽  
Author(s):  
Suresh Natarajan ◽  
Cara-Lena Nies ◽  
Michael Nolan

<div>Size reduction of the barrier and liner stack for copper interconnects is a major bottleneck in further down-scaling of transistor devices. The role of the barrier is to prevent diffusion of Cu atoms into the surrounding dielectric, while the liner (also referred to as a seed layer) ensures that a smooth Cu film can be electroplated. Therefore, a combined barrier+liner material that restricts the diffusion of Cu into the dielectric and allows for copper electro-deposition is needed. In this paper, we have explored barrier+liner materials composed of 1 and 2 monolayers (MLs) of Ru-passivated epsilon-TaN and Ru doped epsilon-TaN and focus on their interactions with Cu through the adsorption of small Cu clusters with 1-4 atoms. Moreover, different doping patterns for Ru doping in TaN are investigated to understand how selective doping of the epsilon-TaN surface influences surface stability. We found that an increased concentration of Ru atoms in the outermost Ta layer improves the adhesion of Cu. The strongest binding of the Cu atoms was found on the 100% Ru doped surface followed by 1 ML Ru passivated surface. These two surfaces are recommended for the combined barrier+liner for Cu interconnects. The closely packed arrangements of Cu were found to exhibit weak Cu-slab and strong Cu-Cu interactions, whereas the sparse arrangements of Cu exhibit strong Cu-slab and weak Cu-Cu interactions. The Cu atoms seem to bind more favourably when they are buried in the doped or passivated surface layer due to the increase in their coordination number. This is facilitated by the surface distortion arising from the ionic radius mismatch between Ta and Ru. We also show that the strong Cu-Cu interaction alone cannot predict the association of Cu atoms as a few 2D Cu clusters showed stronger Cu-Cu interaction than the 3D clusters, highlighting the importance of Cu-surface interactions</div>


2020 ◽  
Author(s):  
Suresh Natarajan ◽  
Cara-Lena Nies ◽  
Michael Nolan

<div>Size reduction of the barrier and liner stack for copper interconnects is a major bottleneck in further down-scaling of transistor devices. The role of the barrier is to prevent diffusion of Cu atoms into the surrounding dielectric, while the liner (also referred to as a seed layer) ensures that a smooth Cu film can be electroplated. Therefore, a combined barrier+liner material that restricts the diffusion of Cu into the dielectric and allows for copper electro-deposition is needed. In this paper, we have explored barrier+liner materials composed of 1 and 2 monolayers (MLs) of Ru-passivated epsilon-TaN and Ru doped epsilon-TaN and focus on their interactions with Cu through the adsorption of small Cu clusters with 1-4 atoms. Moreover, different doping patterns for Ru doping in TaN are investigated to understand how selective doping of the epsilon-TaN surface influences surface stability. We found that an increased concentration of Ru atoms in the outermost Ta layer improves the adhesion of Cu. The strongest binding of the Cu atoms was found on the 100% Ru doped surface followed by 1 ML Ru passivated surface. These two surfaces are recommended for the combined barrier+liner for Cu interconnects. The closely packed arrangements of Cu were found to exhibit weak Cu-slab and strong Cu-Cu interactions, whereas the sparse arrangements of Cu exhibit strong Cu-slab and weak Cu-Cu interactions. The Cu atoms seem to bind more favourably when they are buried in the doped or passivated surface layer due to the increase in their coordination number. This is facilitated by the surface distortion arising from the ionic radius mismatch between Ta and Ru. We also show that the strong Cu-Cu interaction alone cannot predict the association of Cu atoms as a few 2D Cu clusters showed stronger Cu-Cu interaction than the 3D clusters, highlighting the importance of Cu-surface interactions</div>


2020 ◽  
Vol 152 (14) ◽  
pp. 144701 ◽  
Author(s):  
Suresh Kondati Natarajan ◽  
Cara-Lena Nies ◽  
Michael Nolan

1996 ◽  
Vol 451 ◽  
Author(s):  
R. Amster ◽  
B. Johnson ◽  
L. S. Vanasupa
Keyword(s):  

ABSTRACTWe studied the nucleation of Cu deposited by an electroless bath. A Pd seed layer was sputtered onto a (100) Si substrate and analyzed with GIX, STM, and AFM. The seed layer was then placed in varying ED-Cu bath conditions and also analyzed using GIX, STM, and AFM. GIX analysis results show a (111) texture for the Pd seed layer as well as the ED-Cu layer. The seed layer's influence on the deposited Cu grain's texture was found to be inconclusive.


2018 ◽  
Author(s):  
Suresh Natarajan ◽  
Cara-Lena Nies ◽  
Michael Nolan

<div>As the critical dimensions of transistors continue to be scaled down to facilitate improved performance and device speeds, new ultrathin materials that combine diffusion barrier and seed/liner properties are needed for copper interconnects at these length scales. Ideally, to facilitate coating of high aspect ratio structures, this alternative barrier+liner material should only consist of one or as few layers as possible. We studied TaN, the current industry standard for Cu diffusion barriers, and Ru, which is a</div><div>suitable liner material for Cu electroplating, to explore how combining these two materials in a barrier+liner material influences the adsorption of Cu atoms in the early stage of Cu film growth. To this end, we carried out first-principles simulations of the adsorption and diffusion of Cu adatoms at Ru-passivated and Ru-doped e-TaN(1 1 0) surfaces. For comparison, we also studied the behaviour of Cu and Ru adatoms at the low index surfaces of e-TaN, as well as the interaction of Cu adatoms with the (0 0 1) surface of hexagonal Ru. Our results confirm the barrier and liner properties of TaN and Ru, respectively while also highlighting the weaknesses of both materials. Ru passivated TaN was found to have improved binding with Cu adatoms as compared to the bare TaN and Ru surfaces.</div><div>On the other hand, the energetic barrier for Cu diffusion at Ru passivated TaN surface was lower than at the bare TaN surface which can promote Cu agglomeration. For Ru-doped TaN however, a decrease in Cu binding energy was found in addition to favourable migration of the Cu adatoms toward the doped Ru atom and unfavourable migration away from it or into the bulk. This suggests that Ru doping sites in the TaN surface can act as nucleation points for Cu growth with high migration barrier preventing agglomeration and allow electroplating of Cu. Therefore Ru-doped TaN is proposed as a candidate for a combined barrier+liner material with reduced thickness.</div>


Author(s):  
Wen-Fei Hsieh ◽  
Shih-Hsiang Tseng ◽  
Bo Min She

Abstract In this study, an FIB-based cross section TEM sample preparation procedure for targeted via with barrier/Cu seed layer is introduced. The dual beam FIB with electron beam for target location and Ga ion beam for sample milling is the main tool for the targeted via with barrier/Cu seed layer inspection. With the help of the FIB operation and epoxy layer protection, ta cross section TEM sample at a targeted via with barrier/Cu seed layer could be made. Subsequent TEM inspection is used to verify the quality of the structure. This approach was used in the Cu process integration performance monitor. All these TEM results are very helpful in process development and yield improvement.


Author(s):  
Huixian Wu ◽  
James Cargo ◽  
Huixian Wu ◽  
Marvin White

Abstract The integration of copper interconnects and low-K dielectrics will present novel failure modes and reliability issues to failure analysts. This paper discusses failure modes related to Cu/low-K technology. Here, physical failure analysis (FA) techniques including deprocessing and cross-section analysis have been developed. The deprocessing techniques include wet chemical etching, reactive ion etching, chemical mechanical polishing and a combination of these techniques. Case studies on different failure modes related to Cu/low k technology are discussed: copper voiding, copper extrusion; electromigration stress failure; dielectric cracks; delamination-interface adhesion; and FA on circuit-under-pad. For the cross-section analysis of copper/low-K samples, focused ion beam techniques have been developed. Scanning electron microscopy, EDX, and TEM analytical analysis have been used for failure analysis for Cu/low-K technology. Various failure modes and reliability issues have also been addressed.


Sign in / Sign up

Export Citation Format

Share Document