Object segmentation using an array of interconnected neural networks with local receptive fields

Author(s):  
P. Neskovic ◽  
L.N. Cooper
2020 ◽  
Vol 17 (5) ◽  
pp. 172988142093892
Author(s):  
Bingling Chen ◽  
Yan Huang ◽  
Qiaoqiao Xia ◽  
Qinglin Zhang

To enhance the capability of neural networks, research on attention mechanism have been deepened. In this area, attention modules make forward inference along channel dimension and spatial dimension sequentially, parallelly, or simultaneously. However, we have found that spatial attention modules mainly apply convolution layers to generate attention maps, which aggregate feature responses only based on local receptive fields. In this article, we take advantage of this finding to create a nonlocal spatial attention module (NL-SAM), which collects context information from all pixels to adaptively recalibrate spatial responses in a convolutional feature map. NL-SAM overcomes the limitations of repeating local operations and exports a 2D spatial attention map to emphasize or suppress responses in different locations. Experiments on three benchmark datasets show at least 0.58% improvements on variant ResNets. Furthermore, this module is simple and can be easily integrated with existing channel attention modules, such as squeeze-and-excitation and gather-excite, to exceed these significant models at a minimal additional computational cost (0.196%).


1995 ◽  
Vol 7 (3) ◽  
pp. 507-517 ◽  
Author(s):  
Marco Idiart ◽  
Barry Berk ◽  
L. F. Abbott

Model neural networks can perform dimensional reductions of input data sets using correlation-based learning rules to adjust their weights. Simple Hebbian learning rules lead to an optimal reduction at the single unit level but result in highly redundant network representations. More complex rules designed to reduce or remove this redundancy can develop optimal principal component representations, but they are not very compelling from a biological perspective. Neurons in biological networks have restricted receptive fields limiting their access to the input data space. We find that, within this restricted receptive field architecture, simple correlation-based learning rules can produce surprisingly efficient reduced representations. When noise is present, the size of the receptive fields can be optimally tuned to maximize the accuracy of reconstructions of input data from a reduced representation.


Author(s):  
Jörg Bornschein

An FPGA-based coprocessor has been implemented which simulates the dynamics of a large recurrent neural network composed of binary neurons. The design has been used for unsupervised learning of receptive fields. Since the number of neurons to be simulated (>104) exceeds the available FPGA logic capacity for direct implementation, a set of streaming processors has been designed. Given the state- and activity vectors of the neurons at time t and a sparse connectivity matrix, these streaming processors calculate the state- and activity vectors for time t + 1. The operation implemented by the streaming processors can be understood as a generalized form of a sparse matrix vector product (SpMxV). The largest dataset, the sparse connectivity matrix, is stored and processed in a compressed format to better utilize the available memory bandwidth.


Perception ◽  
1989 ◽  
Vol 18 (6) ◽  
pp. 793-803 ◽  
Author(s):  
Ian R Moorhead ◽  
Nigel D Haig ◽  
Richard A Clement

The application of theoretical neural networks to preprocessed images was investigated with the aim of developing a computational recognition system. The neural networks were trained by means of a back-propagation algorithm, to respond selectively to computer-generated bars and edges. The receptive fields of the trained networks were then mapped, in terms of both their synaptic weights and their responses to spot stimuli. There was a direct relationship between the pattern of weights on the inputs to the hidden units (the units in the intermediate layer between the input and the output units), and their receptive field as mapped by spot stimuli. This relationship was not sustained at the level of the output units in that their spot-mapped responses failed to correspond either with the weights of the connections from the hidden units to the output units, or with a qualitative analysis of the networks. Part of this discrepancy may be ascribed to the output function used in the back-propagation algorithm.


Sign in / Sign up

Export Citation Format

Share Document