Deep learning-based anomalous object detection system for panoramic cameras managed by a Jetson TX2 board

Author(s):  
Jesus Benito-Picazo ◽  
Enrique Dominguez ◽  
Esteban J. Palomo ◽  
Gonzalo Ramos-Jimenez ◽  
Ezequiel Lopez-Rubio
Author(s):  
Jesus Benito-Picazo ◽  
Enrique Dominguez ◽  
Esteban J. Palomo ◽  
Ezequiel Lopez-Rubio ◽  
Juan Miguel Ortiz-de-Lazcano-Lobato

2020 ◽  
Vol 28 (S2) ◽  
Author(s):  
Asmida Ismail ◽  
Siti Anom Ahmad ◽  
Azura Che Soh ◽  
Mohd Khair Hassan ◽  
Hazreen Haizi Harith

The object detection system is a computer technology related to image processing and computer vision that detects instances of semantic objects of a certain class in digital images and videos. The system consists of two main processes, which are classification and detection. Once an object instance has been classified and detected, it is possible to obtain further information, including recognizes the specific instance, track the object over an image sequence and extract further information about the object and the scene. This paper presented an analysis performance of deep learning object detector by combining a deep learning Convolutional Neural Network (CNN) for object classification and applies classic object detection algorithms to devise our own deep learning object detector. MiniVGGNet is an architecture network used to train an object classification, and the data used for this purpose was collected from specific indoor environment building. For object detection, sliding windows and image pyramids were used to localize and detect objects at different locations, and non-maxima suppression (NMS) was used to obtain the final bounding box to localize the object location. Based on the experiment result, the percentage of classification accuracy of the network is 80% to 90% and the time for the system to detect the object is less than 15sec/frame. Experimental results show that there are reasonable and efficient to combine classic object detection method with a deep learning classification approach. The performance of this method can work in some specific use cases and effectively solving the problem of the inaccurate classification and detection of typical features.


2020 ◽  
Vol 12 (1) ◽  
pp. 182 ◽  
Author(s):  
Lingxuan Meng ◽  
Zhixing Peng ◽  
Ji Zhou ◽  
Jirong Zhang ◽  
Zhenyu Lu ◽  
...  

Unmanned aerial vehicle (UAV) remote sensing and deep learning provide a practical approach to object detection. However, most of the current approaches for processing UAV remote-sensing data cannot carry out object detection in real time for emergencies, such as firefighting. This study proposes a new approach for integrating UAV remote sensing and deep learning for the real-time detection of ground objects. Excavators, which usually threaten pipeline safety, are selected as the target object. A widely used deep-learning algorithm, namely You Only Look Once V3, is first used to train the excavator detection model on a workstation and then deployed on an embedded board that is carried by a UAV. The recall rate of the trained excavator detection model is 99.4%, demonstrating that the trained model has a very high accuracy. Then, the UAV for an excavator detection system (UAV-ED) is further constructed for operational application. UAV-ED is composed of a UAV Control Module, a UAV Module, and a Warning Module. A UAV experiment with different scenarios was conducted to evaluate the performance of the UAV-ED. The whole process from the UAV observation of an excavator to the Warning Module (350 km away from the testing area) receiving the detection results only lasted about 1.15 s. Thus, the UAV-ED system has good performance and would benefit the management of pipeline safety.


In this paper a method of recognizing logos of the brand of cosmetic products using deep learning. There are several of hoax product which easily copies the famous brand’s logo and deteriorates the company’s image. The machine learning has proved to be useful in various of the fields like medical, object detection, vehicle logo recognitions. But till now very few of the works have been performed in cosmetic field. This field is covered using the model sequential convolutional neural network using Tensorflow and Keras. For the visual representation of the result Tensorboard is used. Work have been started with two of the brands-Lakme and L’Oreal. Depending upon the success of this technique, further brands for logo may be added for recognition. The accuracy of approximately 80% was obtained using this technique.


Author(s):  
Rajeshvaree Ravindra Karmarkar ◽  
Prof.V.N Honmane

—As object recognition technology has developed recently, various technologies have been applied to autonomousvehicles, robots, and industrial facilities. However, the benefits ofthese technologies are not reaching the visually impaired, who need it the most. This paper proposed an object detection system for the blind using deep learning technologies. Furthermore, a voice guidance technique is used to inform sight impaired persons as to the location of objects. The object recognition deep learning model utilizes the You Only Look Once(YOLO) algorithm and a voice announcement is synthesized using text-tospeech (TTS) to make it easier for the blind to get information about objects. Asa result, it implements an efficient object-detection system that helps the blind find objects in a specific space without help from others, and the system is analyzed through experiments to verify performance.


2021 ◽  
Vol 13 (24) ◽  
pp. 5182
Author(s):  
Aaron Etienne ◽  
Aanis Ahmad ◽  
Varun Aggarwal ◽  
Dharmendra Saraswat

Current methods of broadcast herbicide application cause a negative environmental and economic impact. Computer vision methods, specifically those related to object detection, have been reported to aid in site-specific weed management procedures for targeted herbicide application within a field. However, a major challenge to developing a weed detection system is the requirement for a properly annotated database to differentiate between weeds and crops under field conditions. This research involved creating an annotated database of 374 red, green, and blue (RGB) color images organized into monocot and dicot weed classes. The images were acquired from corn and soybean research plots located in north-central Indiana using an unmanned aerial system (UAS) flown at 30 and 10 m heights above ground level (AGL). A total of 25,560 individual weed instances were manually annotated. The annotated database consisted of four different subsets (Training Image Sets 1–4) to train the You Only Look Once version 3 (YOLOv3) deep learning model for five separate experiments. The best results were observed with Training Image Set 4, consisting of images acquired at 10 m AGL. For monocot and dicot weeds, respectively, an average precision (AP) score of 91.48 % and 86.13% was observed at a 25% IoU threshold (AP @ T = 0.25), as well as 63.37% and 45.13% at a 50% IoU threshold (AP @ T = 0.5). This research has demonstrated a need to develop large, annotated weed databases to evaluate deep learning models for weed identification under field conditions. It also affirms the findings of other limited research studies utilizing object detection for weed identification under field conditions.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5116
Author(s):  
Muhammad Ahmed ◽  
Khurram Azeem Hashmi ◽  
Alain Pagani ◽  
Marcus Liwicki ◽  
Didier Stricker ◽  
...  

Recent progress in deep learning has led to accurate and efficient generic object detection networks. Training of highly reliable models depends on large datasets with highly textured and rich images. However, in real-world scenarios, the performance of the generic object detection system decreases when (i) occlusions hide the objects, (ii) objects are present in low-light images, or (iii) they are merged with background information. In this paper, we refer to all these situations as challenging environments. With the recent rapid development in generic object detection algorithms, notable progress has been observed in the field of deep learning-based object detection in challenging environments. However, there is no consolidated reference to cover the state of the art in this domain. To the best of our knowledge, this paper presents the first comprehensive overview, covering recent approaches that have tackled the problem of object detection in challenging environments. Furthermore, we present a quantitative and qualitative performance analysis of these approaches and discuss the currently available challenging datasets. Moreover, this paper investigates the performance of current state-of-the-art generic object detection algorithms by benchmarking results on the three well-known challenging datasets. Finally, we highlight several current shortcomings and outline future directions.


Sign in / Sign up

Export Citation Format

Share Document