An SNN-Based and Neuromorphic-Hardware-Implementable Noise Filter with Self-adaptive Time Window for Event-Based Vision Sensor

Author(s):  
Kanglin Xiao ◽  
Xiaoxin Cui ◽  
Kefei Liu ◽  
Xiaole Cui ◽  
Xin'an Wang
2019 ◽  
Vol 2019 (13) ◽  
pp. 127-1-127-7
Author(s):  
Benjamin J. Foster ◽  
Dong Hye Ye ◽  
Charles A. Bouman

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3240
Author(s):  
Tehreem Syed ◽  
Vijay Kakani ◽  
Xuenan Cui ◽  
Hakil Kim

In recent times, the usage of modern neuromorphic hardware for brain-inspired SNNs has grown exponentially. In the context of sparse input data, they are undertaking low power consumption for event-based neuromorphic hardware, specifically in the deeper layers. However, using deep ANNs for training spiking models is still considered as a tedious task. Until recently, various ANN to SNN conversion methods in the literature have been proposed to train deep SNN models. Nevertheless, these methods require hundreds to thousands of time-steps for training and still cannot attain good SNN performance. This work proposes a customized model (VGG, ResNet) architecture to train deep convolutional spiking neural networks. In this current study, the training is carried out using deep convolutional spiking neural networks with surrogate gradient descent backpropagation in a customized layer architecture similar to deep artificial neural networks. Moreover, this work also proposes fewer time-steps for training SNNs with surrogate gradient descent. During the training with surrogate gradient descent backpropagation, overfitting problems have been encountered. To overcome these problems, this work refines the SNN based dropout technique with surrogate gradient descent. The proposed customized SNN models achieve good classification results on both private and public datasets. In this work, several experiments have been carried out on an embedded platform (NVIDIA JETSON TX2 board), where the deployment of customized SNN models has been extensively conducted. Performance validations have been carried out in terms of processing time and inference accuracy between PC and embedded platforms, showing that the proposed customized models and training techniques are feasible for achieving a better performance on various datasets such as CIFAR-10, MNIST, SVHN, and private KITTI and Korean License plate dataset.


2021 ◽  
Vol 11 (2) ◽  
pp. 23
Author(s):  
Duy-Anh Nguyen ◽  
Xuan-Tu Tran ◽  
Francesca Iacopi

Deep Learning (DL) has contributed to the success of many applications in recent years. The applications range from simple ones such as recognizing tiny images or simple speech patterns to ones with a high level of complexity such as playing the game of Go. However, this superior performance comes at a high computational cost, which made porting DL applications to conventional hardware platforms a challenging task. Many approaches have been investigated, and Spiking Neural Network (SNN) is one of the promising candidates. SNN is the third generation of Artificial Neural Networks (ANNs), where each neuron in the network uses discrete spikes to communicate in an event-based manner. SNNs have the potential advantage of achieving better energy efficiency than their ANN counterparts. While generally there will be a loss of accuracy on SNN models, new algorithms have helped to close the accuracy gap. For hardware implementations, SNNs have attracted much attention in the neuromorphic hardware research community. In this work, we review the basic background of SNNs, the current state and challenges of the training algorithms for SNNs and the current implementations of SNNs on various hardware platforms.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Liqi Yu ◽  
Jialin Sun ◽  
Xinjing Lv ◽  
Qi Feng ◽  
Huimei He ◽  
...  

AbstractPhotoacoustic imaging has the advantages of high contrast and deep imaging depth. However, with the increasing of imaging depth, the signal-to-noise ratio (SNR) of the detected signal decreases, due to the light scattering that seriously affects the recovery image quality. In this paper, we experimentally demonstrated that higher contrast photoacoustic imaging was achieved using photoacoustic wavefront shaping technology in the presence of light scattering and low SNR signals. The imaging contrast is improved from 1.51 to 5.30. More importantly, we propose a dynamic time window method for the photoacoustic signal extraction algorithm, named correlation detection of adaptive time window, which further improves the contrast of photoacoustic imaging to 9.57. Our method effectively improves the contrast of photoacoustic imaging through scattering media.


Sign in / Sign up

Export Citation Format

Share Document