A meander line uniplanar EBG based multiband antenna using defected ground plane for WLAN and WiMAX applications

Author(s):  
Ratnesh Pandey ◽  
Dinesh Kumar Vishwakarma
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3897
Author(s):  
Supakit Kawdungta ◽  
Akkarat Boonpoonga ◽  
Chuwong Phongcharoenpanich

In light of the growth in demand for multiband antennas for medical applications, this research proposes a MICS/ISM meander-line microstrip antenna encapsulated in an oblong-shaped pod for use in diagnoses of the gastrointestinal tract. The proposed antenna is operable in the Medical Implant Communication System (MICS) and the Industrial, Scientific and Medical (ISM) bands. The antenna structure consists of a meander-line radiating patch, a flipped-L defected ground plane, and a loading resistor for antenna miniaturization. The MICS/ISM microstrip antenna encapsulated in an oblong-shaped pod was simulated in various lossy-material environments. In addition, the specific absorption rate (SAR) was calculated and compared against the IEEE C95.1 standard. For verification, an antenna prototype was fabricated and experiments carried out in equivalent liquid mixtures, the dielectric constants of which resembled human tissue. The measured impedance bandwidths (|S11| ≤ −10 dB) for the MICS and ISM bands were 398–407 MHz and 2.41–2.48 GHz. The measured antenna gains were −38 dBi and −13 dBi, with a quasi-omnidirectional radiation pattern. The measured SAR was substantially below the maximum safety limits. As a result, the described MICS/ISM microstrip antenna encapsulated in an oblong-shaped pod can be used for real-time gastrointestinal tract diagnosis. The novelty of this work lies in the use of a meander-line microstrip, flipped-L defected ground plane, and loading resistor to miniaturize the antenna and realize the MICS and ISM bands.


Author(s):  
Ghanshyam Singh ◽  
Binod Kumar Kanaujia ◽  
Vijay Kumar Pandey ◽  
Deepak Gangwar ◽  
Sachin Kumar

Author(s):  
Ghanshyam Singh ◽  
Binod Kumar Kanaujia ◽  
Vijay Kumar Pandey ◽  
Sachin Kumar

Abstract A compact circularly polarized (CP) patch antenna is presented for modern communication systems. The prospective antenna consists of a microstrip-line inset-fed rectangular patch and a defected ground plane. A rotated rectangular slot and a modified electric-inductive-capacitive (m-ELC) resonator are introduced in the patch and the ground plane to achieve multiband behaviour. A corner of the radiating patch is truncated and an arrow-shaped stub is introduced for generating circular polarization. The physical area of the substrate is 0.26λ0 × 0.22λ0, and the radiator size is 0.16λ0 × 0.14λ0, where λ0 is the free-space wavelength estimated at the lowest frequency. The measured (S11≤-10 dB) bandwidths of the antenna are 80 MHz (3.58%) at 2.23 GHz, 75 MHz (2.64%) at 2.84 GHz, 80 MHz (2.50%) at 3.19 GHz, and 70 MHz (1.82%) at 3.83 GHz. The measured 3-dB axial ratio bandwidths are 40 MHz (1.41%), 100 MHz (3.12%), and 60 MHz (1.57%) at 2.84, 3.20 and 3.82 GHz, respectively. The proposed planar antenna design does not need dual-feed or multi-layered patches for achieving multiple CP bands. It offers easy integration with the printed circuits of the communication systems.


2004 ◽  
Vol 14 (4) ◽  
pp. 136-138 ◽  
Author(s):  
A. Abdel-Rahman ◽  
A.K. Verma ◽  
A. Boutejdar ◽  
A.S. Omar

ETRI Journal ◽  
2010 ◽  
Vol 32 (4) ◽  
pp. 610-613 ◽  
Author(s):  
Seong Jae Jeong ◽  
Keum Cheol Hwang
Keyword(s):  

2019 ◽  
Vol 18 (1) ◽  
pp. 1-10
Author(s):  
Sadia Sultana ◽  
Rinku Basak

A unique design and meander line implantable antenna is examined in this paper which satisfies the requirements of ultra-wide band. The designed antenna is integrated with the electromagnetic band gap (EBG) structure based ground plane to enhance the performance. Rectangular electromagnetic band gap (EBG) structures are represented here to evaluate the antenna performance. This compact and efficient MLA antenna is applied to improve the antenna performance for numerous implantable scenarios and biomedical applications. The proposed antenna with EGB ground plane is designed for both the simplified model and anatomical realistic models for the human body and executed the performance in bio-environment. To approve the results of implantable antennas more correctly, simulation is analyzed using anatomical realistic human models. The ultimate design has the whole dimension is 15.2 x 8.8 m2. The thickness of the antenna is about 0.8 mm. FR4 is chosen as the substrate material and Copper is chosen as the patch material. The antenna is enclosed biocompatible material with silicon inside the tissue in order to protect patient safety. Significant parameters such as S11 parameter, Far field (radiation pattern), VSWR, Efficiency, Directivity, Gain of the proposed antenna have calculated and measured the performance both the simplified and realistic human models. Comparison Analysis of S11 parameter for different substrate materials and patch materials have observed. The radiation mechanism and modified design of the implantable antenna reducing Specific Absorption Rate (SAR) for safety issues. All the simulation results and measurements are obtained from CST Microwave Studio to validate the design.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 12206-12212 ◽  
Author(s):  
Emanuele Andrea Casu ◽  
Andrei A. Muller ◽  
Montserrat Fernandez-Bolanos ◽  
Alessandro Fumarola ◽  
Anna Krammer ◽  
...  

2019 ◽  
Vol 11 (9) ◽  
pp. 967-974 ◽  
Author(s):  
Manish Sharma

AbstractIn this article, a multiband antenna for various wireless communications is proposed for WWAN, Bluetooth, WiMAX, WLAN, and Downlink satellite system. The antenna consists of a radiating patch and a rectangular ground plane with four L-shaped stubs which are embedded as side arms to obtain a resonating band for WWAN (1.9GHz), Bluetooth (2.4 GHz), WiMAX (2.5, 3.5, and 5.5 GHz), and WLAN (5.5 GHz) wireless systems and a C-shaped stub is etched on the radiating patch to obtain a higher WLAN band (2.4, 5.2, and 5.8 GHz) and a satellite downlink system (7.5 GHz). The proposed antenna exhibits circular polarization at WWAN band and linear polarization for remaining applications. Also, the proposed antenna exhibits an omnidirectional radiation pattern.


Sign in / Sign up

Export Citation Format

Share Document