An Optimal Fuzzy-PI Controller for the High-Performance Speed Control of a PMSM

Author(s):  
Shaowu Lu ◽  
Xiaoqi Tang ◽  
Bao Song ◽  
Bin Zhou
2018 ◽  
Vol 17 (2) ◽  
pp. 43-50
Author(s):  
Al-Mayhedee Zubair ◽  
Mohammad Abdul Mannan ◽  
Junji Tamura

The environment friendly blessings of Electrical Vehicles (EV), human beings are becoming extra involved in the use of them alternatively than the usage of mechanical differentials. In electrical vehicles distinct sorts of electrical machines are used among them DFIM is used in this work. The challenging work is to design of a controller as the output of the motor has to match with vehicle input. So, far, most of the mentioned works have utilized Proportional-Integral (PI) controllers as the speed control. But, the negative aspects of PI controller are properly known, as its design depends on the specific motor parameters and the overall performance is sensitive to system disturbances. The fundamental goal of this paper is to replace the conventional PI controller by means of an IP controller which is successful of dealing with exceedingly non-linear DFIM motor for high performance application in Electrical Vehicle. The effectiveness of designed IP controller of an electrical differential for an EV system is evaluated through Matlab/Simulink software. In simulation work different road conditions for EV are considered. After the simulation the designed controller is found to be strong for the speed control application of Electrical Vehicle.


2021 ◽  
Vol 11 (4) ◽  
pp. 7399-7404
Author(s):  
N. H. Mugheri ◽  
M. U. Keerio

The Induction Motor (IM) is popular because of its low price, higher efficiency, and low maintenance cost. A comparative analysis of IM speed controllers using Voltage/Frequency (V/F) control or Scalar Control (SC) is presented in this paper. SC is commonly used due to its ease of implementation, simplicity, and low cost. To decrease the difficulty and cost of hardware implementation, this paper proposes an optimal Fuzzy Proportional Integral (Fuzzy-PI) controller. Firstly, the speed of IM using the V/F control technique is discussed. Then, speed control of IM using a conventional PI controller is performed. Finally, a simplified-rules Fuzzy-PI controller is developed in MATLAB/SIMULINK and its performance is compared with that of open-loop SC and the traditional PI controller. The performance of the simplified-rules Fuzzy-PI controller is superior to that of an open-loop constant V/F control and a conventional PI controller.


Sign in / Sign up

Export Citation Format

Share Document