The performances of the novel nozzle-scan coating method

Author(s):  
S. Ito ◽  
T. Ema ◽  
K. Sho ◽  
K. Okumura ◽  
T. Kitano ◽  
...  
Keyword(s):  
2018 ◽  
Vol 7 (1) ◽  
pp. 289-297 ◽  
Author(s):  
Murat Bektas ◽  
Thomas Stöcker ◽  
Angelika Mergner ◽  
Gunter Hagen ◽  
Ralf Moos

Abstract. The present study is focused in two directions. In the first part, BaFe(1-x)-0.01Al0.01TaxO3−δ (BFATx) thick films with a Ta content between 0.1 and 0.4 were manufactured using the novel room temperature coating method “aerosol deposition” (ADM), and its material properties were characterized to find the best composition of BFATx for temperature-independent oxygen sensors. The material properties “Seebeck coefficient” and “conductivity” were determined between 600 and 800 ∘C at different oxygen partial pressures. BaFe0.69Al0.01Ta0.3O3−δ (BFAT30) was found out to be very promising due to the almost temperature-independent behavior of both the conductivity and the Seebeck coefficient. In the second part of this study, films of BFAT30 were prepared on a special transducer that includes a heater, equipotential layers, and special electrode structures so that a combined direct thermoelectric/resistive oxygen sensor of BFAT30 with almost temperature-independent characteristics of both measurands, Seebeck coefficient and conductance could be realized. At high oxygen partial pressures (pO2 > 10−5 bar), the electrical conductance of the sensor shows an oxygen sensitivity of m = 0.24 (with m being the slope in the logσ vs. logpO2 representation according to the behavior of σαpO2m), while the Seebeck coefficient changes with a slope of −38 µV K−1 per decade of pO2 at 700 ∘C. However, at low pO2 (pO2 < 10−14 bar) the conductance and the Seebeck coefficient change with pO2, with a slope of m = −0.23 and −21.2 µV K−1 per decade pO2, respectively.


2021 ◽  
Author(s):  
Jeyasubramanian Kadarkaraithangam ◽  
Thangaiyanadar Suyambulingam Gokul Raja ◽  
Silambuselvan Parani Bramma Nayagi ◽  
Karthikeyan Krishnamoorthy

This chapter describes the results of developing superhydrophobic coatings using porous ZnO nanostructures impregnated metal stearates and their applications. The porous ZnO nanostructures with a surface area of 9.7 m2/g and pores in the range from 200 to 400 nm have been prepared via precipitation cum calcination route. The superhydrophobic coatings comprising ZnO/metal stearate film have been deposited using a spray coating method. The developed superhydrophobic films possess a water contact angle of 161° that can be explained using the Cassie-Baxter model. The prepared films exhibited excellent floating properties and high load-bearing characteristics over a prolonged time. Additionally, the self-cleaning properties of the developed superhydrophobic films towards dust removal and self-cleaning urinary coatings are also demonstrated. This chapter collectively presented the novel applications of superhydrophobic coating in the development of biomedical coatings and applications in water surveillance and underwater robotics.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1501
Author(s):  
Wenjia Zhao ◽  
Zhaoping Shi ◽  
Yongbing Qi ◽  
Jipeng Cheng

In this paper, ZnCo2O4 nanowire arrays with a uniform carbon coating were introduced when polyvinyl alcohol (PVA) served as the carbon source. The coating process was completed by a facile bath method in PVA aqueous solution and subsequent pyrolyzation. The PVA-derived carbon-coated ZnCo2O4 nanowire array composites can be used directly as the binder-free and self-supported anode materials for lithium-ion batteries. In the carbon-coated ZnCo2O4 composites, the carbon layer carbonized from PVA can accelerate the electron transfer and accommodate the volume swing during the cycling process. The lithium storage properties of the carbon-coated ZnCo2O4 composites are investigated. It is believed that the novel carbon-coating method is universal and can be applied to other nanoarray materials.


2010 ◽  
Vol 34 (8) ◽  
pp. S33-S33
Author(s):  
Wenchao Ou ◽  
Haifeng Chen ◽  
Yun Zhong ◽  
Benrong Liu ◽  
Keji Chen

Sign in / Sign up

Export Citation Format

Share Document