Research of mechanical properties of Copper foils with low temperature annealing.

Author(s):  
Chuan-Yu Fang ◽  
Chih Chen
2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Przemysław Snopiński ◽  
Mariusz Król ◽  
Marek Pagáč ◽  
Jana Petrů ◽  
Jiří Hajnyš ◽  
...  

AbstractThis study investigated the impact of the equal channel angular pressing (ECAP) combined with heat treatments on the microstructure and mechanical properties of AlSi10Mg alloys fabricated via selective laser melting (SLM) and gravity casting. Special attention was directed towards determining the effect of post-fabrication heat treatments on the microstructural evolution of AlSi10Mg alloy fabricated using two different routes. Three initial alloy conditions were considered prior to ECAP deformation: (1) as-cast in solution treated (T4) condition, (2) SLM in T4 condition, (3) SLM subjected to low-temperature annealing. Light microscopy, transmission electron microscopy, X-ray diffraction line broadening analysis, and electron backscattered diffraction analysis were used to characterize the microstructures before and after ECAP. The results indicated that SLM followed by low-temperature annealing led to superior mechanical properties, relative to the two other conditions. Microscopic analyses revealed that the partial-cellular structure contributed to strong work hardening. This behavior enhanced the material’s strength because of the enhanced accumulation of geometrically necessary dislocations during ECAP deformation.


2017 ◽  
Vol 265 ◽  
pp. 456-462 ◽  
Author(s):  
P.L. Reznik ◽  
Mikhail Lobanov

Studies have been conducted as to the effect of Cu, Mn, Fe concentration changes in Al-Cu-Mn-Fe-Ti alloy, the conditions of thermal and deformational treatment of ingots and extruded rods 40 mm in diameter on the microstructure, phase composition and mechanical properties. It has been determined that changing Al-6.3Cu-0.3Mn-0.17Fe-0.15Ti alloy to Al-6.5Cu-0.7Mn-0.11Fe-0.15Ti causes an increase in the strength characteristics of extruded rods at the room temperature both after molding and in tempered and aged conditions, irrespective of the conditions of thermal treatment of the initial ingot (low-temperature annealing 420 °С for 2 h, or high-temperature annealing at 530 °С for 12 h). Increasing the extruding temperature from 330 to 480 °С, along with increasing Cu, Mn and decreasing Fe in the alloy Al-Cu-Mn-Ti, is accompanied by the increased level of ultimate strength in a quenched condition by 25% to 410 MPa, irrespective of the annealing conditions of the original ingot. An opportunity to apply the Al-6.3Cu-0.3Mn-0.17Fe-0.15Ti alloy with low-temperature annealing at 420 °С for 2 h and the molding temperature of 330 °С has been found to produce rods where, in the condition of full thermal treatment (tempering at 535 °С + aging at 200 °С for 8 hours), a structure is formed that ensures satisfactory characteristics of high temperature strength by resisting to fracture for more than 100 hours at 300 °С and 70 MPa.


2021 ◽  
Vol 39 (3) ◽  
pp. 430-435
Author(s):  
Karolina Kowalczyk

Abstract The paper presents observations on the mechanical properties characterizing low-carbon steel subjected to deformation by the dual rolls equal channel extrusion (DRECE) method and annealed for 60 min in different temperature variants in the range of 450–700°C. The DRECE process was carried out up to seven passes at ambient temperature. The investigations carried out revealed that the strength of the steel strips increases corresponding to the rise in the number of DRECE passes applied. The yield strength (YS) after seven passes is >2.5 times higher compared to the material in the initial state (before the deformation process). However, the tensile ductility decreased significantly after the DRECE. In order to obtain favorable mechanical properties, the steel strips were subjected to annealing. Our study demonstrates that after being processed by the DRECE method, low-carbon steel can be subjected to low-temperature annealing to ensure that it is endowed with high strength, while maintaining the characteristic good ductility of the material. The results of the research were analyzed in the context of an investigation into the microstructure change, assessed by scanning transmission electron microscopy (STEM), induced in low-carbon steel subjected to the DRECE process and low-temperature annealing.


Sign in / Sign up

Export Citation Format

Share Document