2015 ◽  
Vol 781 ◽  
pp. 89-92 ◽  
Author(s):  
Atikom Suppayasarn ◽  
Sarun Duangsuwan ◽  
Sathaporn Promwong

This paper studies an indoor multipath interference cancellation using the MMSE-CMA estimator for the unlicensed at 2.45 GHz of wireless communication systems. The proposed of the MMSE-CMA estimator can mitigate a superposition of the multipath interference at the receiver. As the result, the magnitudes of the channel characterization in the time domain are shown between the measured and estimated channel as a difference of number of iterations. Furthermore, we also confirm the multipath interference cancellation with the eye diagrams.


2018 ◽  
Vol 6 (2) ◽  
pp. 231-238 ◽  
Author(s):  
Jie Zhao ◽  
Xi Yang ◽  
Jun Yan Dai ◽  
Qiang Cheng ◽  
Xiang Li ◽  
...  

Abstract Optical non-linear phenomena are typically observed in natural materials interacting with light at high intensities, and they benefit a diverse range of applications from communication to sensing. However, controlling harmonic conversion with high efficiency and flexibility remains a major issue in modern optical and radio-frequency systems. Here, we introduce a dynamic time-domain digital-coding metasurface that enables efficient manipulation of spectral harmonic distribution. By dynamically modulating the local phase of the surface reflectivity, we achieve accurate control of different harmonics in a highly programmable and dynamic fashion, enabling unusual responses, such as velocity illusion. As a relevant application, we propose and realize a novel architecture for wireless communication systems based on the time-domain digital-coding metasurface, which largely simplifies the architecture of modern communication systems, at the same time yielding excellent performance for real-time signal transmission. The presented work, from new concept to new system, opens new pathways in the application of metamaterials to practical technology.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
C. Hannachi ◽  
D. Hammou ◽  
T. Djerafi ◽  
Z. Ouardirhi ◽  
S. O. Tatu

This paper presents the characterization results of several new passive millimeter wave circuits integrated on very thin ceramic substrate. The work is focused on the design and characterization of a novel rounded Wilkinson power divider, a 90° hybrid coupler, a rat-race coupler, and a novel six-port (multiport) circuit. Measurements show the wideband characteristics, allowing therefore their use for multi-Gb/s V-band wireless communication systems.


Sign in / Sign up

Export Citation Format

Share Document