High-Performance Spectral Element Methods on Field-Programmable Gate Arrays : Implementation, Evaluation, and Future Projection

Author(s):  
Martin Karp ◽  
Artur Podobas ◽  
Niclas Jansson ◽  
Tobias Kenter ◽  
Christian Plessl ◽  
...  
Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1265 ◽  
Author(s):  
Zhuang Cao ◽  
Huiguo Zhang ◽  
Junnan Li ◽  
Mei Wen ◽  
Chunyuan Zhang

The development of modern networking requires that high-performance network processors be designed quickly and efficiently to support new protocols. As a very important part of the processor, the parser parses the headers of the packets—this is the precondition for further processing and finally forwarding these packets. This paper presents a framework designed to transform P4 programs to VHDL and to generate parsers on Field Programmable Gate Arrays (FPGAs). The framework includes a pipeline-based hardware architecture and a back-end compiler. The hardware architecture comprises many components with varying functionality, each of which has its own optimized VHDL template. By using the output of a standard frontend P4 compiler, our proposed compiler extracts the parameters and relationships from within the used components, which can then be mapped to corresponding templates by configuring, optimizing, and instantiating them. Finally, these templates are connected to output VHDL code. When a prototype of this framework is implemented and evaluated, the results demonstrate that the throughputs of the generated parsers achieve nearly 320 Gbps at a clock rate of around 300 MHz. Compared with state-of-the-art solutions, our proposed parsers achieve an average of twice the throughput when similar amounts of resources are being used.


2022 ◽  
Vol 15 (2) ◽  
pp. 1-35
Author(s):  
Tom Hogervorst ◽  
Răzvan Nane ◽  
Giacomo Marchiori ◽  
Tong Dong Qiu ◽  
Markus Blatt ◽  
...  

Scientific computing is at the core of many High-Performance Computing applications, including computational flow dynamics. Because of the utmost importance to simulate increasingly larger computational models, hardware acceleration is receiving increased attention due to its potential to maximize the performance of scientific computing. Field-Programmable Gate Arrays could accelerate scientific computing because of the possibility to fully customize the memory hierarchy important in irregular applications such as iterative linear solvers. In this article, we study the potential of using Field-Programmable Gate Arrays in High-Performance Computing because of the rapid advances in reconfigurable hardware, such as the increase in on-chip memory size, increasing number of logic cells, and the integration of High-Bandwidth Memories on board. To perform this study, we propose a novel Sparse Matrix-Vector multiplication unit and an ILU0 preconditioner tightly integrated with a BiCGStab solver kernel. We integrate the developed preconditioned iterative solver in Flow from the Open Porous Media project, a state-of-the-art open source reservoir simulator. Finally, we perform a thorough evaluation of the FPGA solver kernel in both stand-alone mode and integrated in the reservoir simulator, using the NORNE field, a real-world case reservoir model using a grid with more than 10 5 cells and using three unknowns per cell.


Author(s):  
Miriam Leeser ◽  
Suranga Handagala ◽  
Michael Zink

As cloud computing grows,  the types of computational hardware available in the cloud are diversifying. Field Programmable Gate Arrays (FPGAs) are a relatively new addition to high-performance computing in the cloud, with the ability to accelerate a range of different applications, and the flexibility to offer different cloud computing models. A new and growing configuration is to have the FPGAs directly connected to the network and thus reduce the latency in delivering data to processing elements. We survey the state-of-the-art in FPGAs in the cloud and present the Open Cloud Testbed (OCT), a testbed for research and experimentation into new cloud platforms, which includes network-attached FPGAs in the cloud.


Sign in / Sign up

Export Citation Format

Share Document