Location Estimation of Sensor nodes in 3-d Wireless Sensor Networks Based on Multidimensional Support Vector Regression

Author(s):  
Paria Mohammadzadeh ◽  
Shahla Mohseni Fard ◽  
Ghanbar Azarnia ◽  
Mohammad Ali Tinati
Author(s):  
Osman Salem ◽  
Alexey Guerassimov ◽  
Ahmed Mehaoua ◽  
Anthony Marcus ◽  
Borko Furht

This paper details the architecture and describes the preliminary experimentation with the proposed framework for anomaly detection in medical wireless body area networks for ubiquitous patient and healthcare monitoring. The architecture integrates novel data mining and machine learning algorithms with modern sensor fusion techniques. Knowing wireless sensor networks are prone to failures resulting from their limitations (i.e. limited energy resources and computational power), using this framework, the authors can distinguish between irregular variations in the physiological parameters of the monitored patient and faulty sensor data, to ensure reliable operations and real time global monitoring from smart devices. Sensor nodes are used to measure characteristics of the patient and the sensed data is stored on the local processing unit. Authorized users may access this patient data remotely as long as they maintain connectivity with their application enabled smart device. Anomalous or faulty measurement data resulting from damaged sensor nodes or caused by malicious external parties may lead to misdiagnosis or even death for patients. The authors' application uses a Support Vector Machine to classify abnormal instances in the incoming sensor data. If found, the authors apply a periodically rebuilt, regressive prediction model to the abnormal instance and determine if the patient is entering a critical state or if a sensor is reporting faulty readings. Using real patient data in our experiments, the results validate the robustness of our proposed framework. The authors further discuss the experimental analysis with the proposed approach which shows that it is quickly able to identify sensor anomalies and compared with several other algorithms, it maintains a higher true positive and lower false negative rate.


Author(s):  
Amarasimha T. ◽  
V. Srinivasa Rao

Wireless sensor networks are used in machine learning for data communication and classification. Sensor nodes in network suffer from low battery power, so it is necessary to reduce energy consumption. One way of decreasing energy utilization is reducing the information transmitted by an advanced machine learning process called support vector machine. Further, nodes in WSN malfunction upon the occurrence of malicious activities. To overcome these issues, energy conserving and faulty node detection WSN is proposed. SVM optimizes data to be transmitted via one-hop transmission. It sends only the extreme points of data instead of transmitting whole information. This will reduce transmitting energy and accumulate excess energy for future purpose. Moreover, malfunction nodes are identified to overcome difficulties on data processing. Since each node transmits data to nearby nodes, the misbehaving nodes are detected based on transmission speed. The experimental results show that proposed algorithm provides better results in terms of reduced energy consumption and faulty node detection.


Tracking the location of target nodes/objects plays a vital role in disaster management and emergency rescue operations. The wireless sensor network is an easiest and cheapest solution to track the target nodes/objects in emergency applications. Use of GPS installed devices in wireless sensor networks is one of the solutions to track the target node’s location. Installing GPS device on every target node is very expensive and the GPS device drains the battery power, and increases the size of sensor nodes. Localization is an alternative solution to track the target node’s location. Many localization algorithms are available to track/estimate the target node’s location coordinates, but the accuracy of the estimated target nodes is poor. A new localization technique is proposed in this work to improve the accuracy of the estimated location of the target nodes. The proposed technique uses two anchor nodes, and parameters like linear vector segments, received signal strength, and angle of arrival measures in the location estimation process. This work has been simulated in MATLAB. The proposed algorithm outperforms the existing localization techniques.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 28 ◽  
Author(s):  
Shahaboddin Shamshirband ◽  
Javad Hassannataj Joloudari ◽  
Mohammad GhasemiGol ◽  
Hamid Saadatfar ◽  
Amir Mosavi ◽  
...  

Wireless sensor networks (WSNs) include large-scale sensor nodes that are densely distributed over a geographical region that is completely randomized for monitoring, identifying, and analyzing physical events. The crucial challenge in wireless sensor networks is the very high dependence of the sensor nodes on limited battery power to exchange information wirelessly as well as the non-rechargeable battery of the wireless sensor nodes, which makes the management and monitoring of these nodes in terms of abnormal changes very difficult. These anomalies appear under faults, including hardware, software, anomalies, and attacks by raiders, all of which affect the comprehensiveness of the data collected by wireless sensor networks. Hence, a crucial contraption should be taken to detect the early faults in the network, despite the limitations of the sensor nodes. Machine learning methods include solutions that can be used to detect the sensor node faults in the network. The purpose of this study is to use several classification methods to compute the fault detection accuracy with different densities under two scenarios in regions of interest such as MB-FLEACH, one-class support vector machine (SVM), fuzzy one-class, or a combination of SVM and FCS-MBFLEACH methods. It should be noted that in the study so far, no super cluster head (SCH) selection has been performed to detect node faults in the network. The simulation outcomes demonstrate that the FCS-MBFLEACH method has the best performance in terms of the accuracy of fault detection, false-positive rate (FPR), average remaining energy, and network lifetime compared to other classification methods.


2013 ◽  
Vol 43 (4) ◽  
pp. 1189-1198 ◽  
Author(s):  
Woojin Kim ◽  
Jaemann Park ◽  
Jaehyun Yoo ◽  
H. Jin Kim ◽  
Chan Gook Park

Author(s):  
Priyanka Jain

Abstract: The area of underwater wireless sensor networks (UWSNs) is garnering an increasing attention from researchers due to its broad potential for exploring and harnessing oceanic sources of interest. Because of the need for real-time remote data monitoring, underwater acoustic sensor networks (UASNs) have become a popular choice. The restricted availability and nonrechargeability of energy resources, as well as the relative inaccessibility of deployed sensor nodes for energy replenishment, forced the development of many energy optimization approaches un the UASN. Clustering is an example of a technology that improves system scalability while also lowering energy consumption. Due to the unstable underwater environment, coverage and connectivity are two important features that determine the proper detection and communication of events of interest in UWSN. A sensor network consists of several nodes that are low in cost and have a battery with low capacity. In wireless sensor networks, knowing the position of a specific device in the network is a critical challenge. Many wireless systems require location information from mobile nodes. Keywords: MAC, Communication cost, IDV-Hop algorithm, Localization, Ranging error, unconstrained optimization, Wireless sensor network, Distributed Least Square


Sign in / Sign up

Export Citation Format

Share Document