A Comparison of Constant Curvature Forward Kinematics for Multisection Continuum Manipulators

Author(s):  
Anant Chawla ◽  
Chase Frazelle ◽  
Ian Walker
Robotica ◽  
2021 ◽  
pp. 1-19
Author(s):  
A. H. Bouyom Boutchouang ◽  
Achille Melingui ◽  
J. J. B. Mvogo Ahanda ◽  
Othman Lakhal ◽  
Frederic Biya Motto ◽  
...  

SUMMARY Forward kinematics is essential in robot control. Its resolution remains a challenge for continuum manipulators because of their inherent flexibility. Learning-based approaches allow obtaining accurate models. However, they suffer from the explosion of the learning database that wears down the manipulator during data collection. This paper proposes an approach that combines the model and learning-based approaches. The learning database is derived from analytical equations to prevent the robot from operating for long periods. The database obtained is handled using Deep Neural Networks (DNNs). The Compact Bionic Handling robot serves as an experimental platform. The comparison with existing approaches gives satisfaction.


Robotica ◽  
2019 ◽  
Vol 37 (5) ◽  
pp. 868-882
Author(s):  
Mahdi Bamdad ◽  
M. Mehdi Bahri

SummaryRecently, the idea of applying “jamming” of appropriate media has been exploited for a novel continuum robot design. It is completed by applying vacuum in a robot structure filled with granular media. The backbone deformation and motion are achieved by controlling the fluid pressure. A jammable robotic manipulator does not certainly follow constant curvature during bending, that is, gravitational loads cause section sag. The kinematics describes the deformation of continuum manipulators. This formulation is expected to facilitate additional synthesis and analysis on workspace. This paper presents a Jacobian-based approach to obtain the forward kinematics solution. The proposed kinematic formulation in this paper tries to combine the key advantages of the techniques in constant curvature and variable curvature models. Hence, the deformation of any arbitrary bending is modeled. The workspace synthesis is continued by kinematic analysis, and in this regard, the manipulability measure is computed. This is an important improvement when compared with existing work for this kind of manipulators. It shows how manipulability measure can determine the workspace quality, where usually reachability is used for robot’s capabilities representation. As a result, the forward kinematics and manipulability analysis based on a piecewise-constant-curvature approximation are discussed in the simulation. The simulation has been carried out according to the fabricated experimental robot.


2015 ◽  
Vol 7 (4) ◽  
Author(s):  
Zhijiang Du ◽  
Wenlong Yang ◽  
Wei Dong

In this paper, the kinematics modeling of a notched continuum manipulator is presented, which includes the mechanics-based forward kinematics and the curve-fitting-based inverse kinematics. In order to establish the forward kinematics model by using Denavit–Hartenberg (D–H) procedure, the compliant continuum manipulator featuring the hyper-redundant degrees of freedom (DOF) is simplified into finite discrete joints. Based on that hypothesis, the mapping from the discrete joints to the distal position of the continuum manipulator is built up via the mechanics model. On the other hand, to reduce the effect of the hyper-redundancy for the continuum manipulator's inverse kinematic model, the “curve-fitting” approach is utilized to map the end position to the deformation angle of the continuum manipulator. By the proposed strategy, the inverse kinematics of the hyper-redundant continuum manipulator can be solved by using the traditional geometric method. Finally, the proposed methodologies are validated experimentally on a triangular notched continuum manipulator which illustrates the capability and the effectiveness of our proposed kinematics for continuum manipulators and also can be used as a generic method for such notched continuum manipulators.


2020 ◽  
Vol 23 (3) ◽  
pp. 306-311
Author(s):  
Yu. Kurochkin ◽  
Dz. Shoukavy ◽  
I. Boyarina

The immobility of the center of mass in spaces of constant curvature is postulated based on its definition obtained in [1]. The system of two particles which interact through a potential depending only on the distance between particles on a three-dimensional sphere is considered. The Hamilton-Jacobi equation is formulated and its solutions and trajectory equations are found. It was established that the reduced mass of the system depends on the relative distance.


2019 ◽  
Vol 32 (1) ◽  
Author(s):  
Haitao Liu ◽  
Ke Xu ◽  
Huiping Shen ◽  
Xianlei Shan ◽  
Tingli Yang

Abstract Direct kinematics with analytic solutions is critical to the real-time control of parallel mechanisms. Therefore, the type synthesis of a mechanism having explicit form of forward kinematics has become a topic of interest. Based on this purpose, this paper deals with the type synthesis of 1T2R parallel mechanisms by investigating the topological structure coupling-reducing of the 3UPS&UP parallel mechanism. With the aid of the theory of mechanism topology, the analysis of the topological characteristics of the 3UPS&UP parallel mechanism is presented, which shows that there are highly coupled motions and constraints amongst the limbs of the mechanism. Three methods for structure coupling-reducing of the 3UPS&UP parallel mechanism are proposed, resulting in eight new types of 1T2R parallel mechanisms with one or zero coupling degree. One obtained parallel mechanism is taken as an example to demonstrate that a mechanism with zero coupling degree has an explicit form for forward kinematics. The process of type synthesis is in the order of permutation and combination; therefore, there are no omissions. This method is also applicable to other configurations, and novel topological structures having simple forward kinematics can be obtained from an original mechanism via this method.


Sign in / Sign up

Export Citation Format

Share Document