The basin of attraction for running robots: Fractals, multistep trajectories, and the choice of control

Author(s):  
Tom Cnops ◽  
Zhenyu Gan ◽  
C. David Remy
Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 865 ◽  
Author(s):  
Julian Gonzalez-Ayala ◽  
Moises Santillán ◽  
Maria Santos ◽  
Antonio Calvo Hernández ◽  
José Mateos Roco

Local stability of maximum power and maximum compromise (Omega) operation regimes dynamic evolution for a low-dissipation heat engine is analyzed. The thermodynamic behavior of trajectories to the stationary state, after perturbing the operation regime, display a trade-off between stability, entropy production, efficiency and power output. This allows considering stability and optimization as connected pieces of a single phenomenon. Trajectories inside the basin of attraction display the smallest entropy drops. Additionally, it was found that time constraints, related with irreversible and endoreversible behaviors, influence the thermodynamic evolution of relaxation trajectories. The behavior of the evolution in terms of the symmetries of the model and the applied thermal gradients was analyzed.


Author(s):  
Sue Ann Campbell ◽  
Stephanie Crawford ◽  
Kirsten Morris

We consider an experimental system consisting of a pendulum, which is free to rotate 360 degrees, attached to a cart which can move in one dimension. There is stick slip friction between the cart and the track on which it moves. Using two different models for this friction we design feedback controllers to stabilize the pendulum in the upright position. We show that controllers based on either friction model give better performance than one based on a simple viscous friction model. We then study the effect of time delay in this controller, by calculating the critical time delay where the system loses stability and comparing the calculated value with experimental data. Both models lead to controllers with similar robustness with respect to delay. Using numerical simulations, we show that the effective critical time delay of the experiment is much less than the calculated theoretical value because the basin of attraction of the stable equilibrium point is very small.


Robotica ◽  
2010 ◽  
Vol 29 (5) ◽  
pp. 657-665 ◽  
Author(s):  
Yong Hu ◽  
Gangfeng Yan ◽  
Zhiyun Lin

SUMMARYThis paper investigates the stable-running problem of a planar underactuated biped robot, which has two springy telescopic legs and one actuated joint in the hip. After modeling the robot as a hybrid system with multiple continuous state spaces, a natural passive limit cycle, which preserves the system energy at touchdown, is found using the method of Poincaré shooting. It is then checked that the passive limit cycle is not stable. To stabilize the passive limit cycle, an event-based feedback control law is proposed, and also to enlarge the basin of attraction, an additive passivity-based control term is introduced only in the stance phase. The validity of our control strategies is illustrated by a series of numerical simulations.


Author(s):  
A. L. Schwab ◽  
M. Wisse

Abstract Passive dynamic walking is an important development for walking robots, supplying natural, energy-efficient motions. In practice, the cyclic gait of passive dynamic prototypes appears to be stable, only for small disturbances. Therefore, in this paper we research the basin of attraction of the cyclic walking motion for the simplest walking model. Furthermore, we present a general method for deriving the equations of motion and impact equations for the analysis of multibody systems, as in walking models. Application of the cell mapping method shows the basin of attraction to be a small, thin area. It is shown that the basin of attraction is not directly related to the stability of the cyclic motion.


2009 ◽  
Vol 19 (03) ◽  
pp. 1043-1049 ◽  
Author(s):  
DIOGO BAPTISTA ◽  
RICARDO SEVERINO ◽  
SANDRA VINAGRE

For parameter values which assure its existence, we characterize the basin of attraction for the Lozi map strange attractor.


1995 ◽  
Vol 62 (4) ◽  
pp. 941-946 ◽  
Author(s):  
R. Haberman ◽  
E. K. Ho

The dissipatively perturbed Hamiltonian system corresponding to primary resonance is analyzed in the case in which two competing stable periodic responses exist. The method of averaging fails as the trajectory approaches the unperturbed homoclinic orbit (separatrix). By using the small dissipation of the Hamiltonian (the Melnikov integral) near the homoclinic orbit, the boundaries of the basin of attraction are determined analytically in an asymptotically accurate way. The selection of the two competing periodic responses is influenced by small changes in the initial conditions. The analytic formula is shown to agree well with numerical computations.


1998 ◽  
Vol 10 (6) ◽  
pp. 1527-1546 ◽  
Author(s):  
Toshio Aoyagi ◽  
Katsunori Kitano

We present an analytical approach that allows us to treat the long-time behavior of the recalling process in an oscillator neural network. It is well known that in coupled oscillatory neuronal systems, under suitable conditions, the original dynamics can be reduced to a simpler phase dynamics. In this description, the phases of the oscillators can be regarded as the timings of the neuronal spikes. To attempt an analytical treatment of the recalling dynamics of such a system, we study a simplified model in which we discretize time and assume a synchronous updating rule. The theoretical results show that the retrieval dynamics is described by recursion equations for some macroscopic parameters, such as an overlap with the retrieval pattern. We then treat the noise components in the local field, which arise from the learning of the unretrieved patterns, as gaussian variables. However, we take account of the temporal correlation between these noise components at different times. In particular, we find that this correlation is essential for correctly predicting the behavior of the retrieval process in the case of autoassociative memory. From the derived equations, the maximal storage capacity and the basin of attraction are calculated and graphically displayed. We also consider the more general case that the network retrieves an ordered sequence of phase patterns. In both cases, the basin of attraction remains sufficiently wide to recall the memorized pattern from a noisy one, even near saturation. The validity of these theoretical results is supported by numerical simulations. We believe that this model serves as a convenient starting point for the theoretical study of retrieval dynamics in general oscillatory systems.


Sign in / Sign up

Export Citation Format

Share Document