Robotic manipulation of deformable objects by tangent space mapping and non-rigid registration

Author(s):  
Te Tang ◽  
Changliu Liu ◽  
Wenjie Chen ◽  
Masayoshi Tomizuka
2021 ◽  
Vol 15 ◽  
Author(s):  
Fan Wu ◽  
Anmin Gong ◽  
Hongyun Li ◽  
Lei Zhao ◽  
Wei Zhang ◽  
...  

Objective: Tangent Space Mapping (TSM) using the geometric structure of the covariance matrices is an effective method to recognize multiclass motor imagery (MI). Compared with the traditional CSP method, the Riemann geometric method based on TSM takes into account the nonlinear information contained in the covariance matrix, and can extract more abundant and effective features. Moreover, the method is an unsupervised operation, which can reduce the time of feature extraction. However, EEG features induced by MI mental activities of different subjects are not the same, so selection of subject-specific discriminative EEG frequency components play a vital role in the recognition of multiclass MI. In order to solve the problem, a discriminative and multi-scale filter bank tangent space mapping (DMFBTSM) algorithm is proposed in this article to design the subject-specific Filter Bank (FB) so as to effectively recognize multiclass MI tasks.Methods: On the 4-class BCI competition IV-2a dataset, first, a non-parametric method of multivariate analysis of variance (MANOVA) based on the sum of squared distances is used to select discriminative frequency bands for a subject; next, a multi-scale FB is generated according to the range of these frequency bands, and then decompose multi-channel EEG of the subject into multiple sub-bands combined with several time windows. Then TSM algorithm is used to estimate Riemannian tangent space features in each sub-band and finally a liner Support Vector Machines (SVM) is used for classification.Main Results: The analysis results show that the proposed discriminative FB enhances the multi-scale TSM algorithm, improves the classification accuracy and reduces the execution time during training and testing. On the 4-class BCI competition IV-2a dataset, the average session to session classification accuracy of nine subjects reached 77.33 ± 12.3%. When the training time and the test time are similar, the average classification accuracy is 2.56% higher than the latest TSM method based on multi-scale filter bank analysis technology. When the classification accuracy is similar, the training speed is increased by more than three times, and the test speed is increased two times more. Compared with Supervised Fisher Geodesic Minimum Distance to the Mean (Supervised FGMDRM), another new variant based on Riemann geometry classifier, the average accuracy is 3.36% higher, we also compared with the latest Deep Learning method, and the average accuracy of 10-fold cross validation improved by 2.58%.Conclusion: Research shows that the proposed DMFBTSM algorithm can improve the classification accuracy of MI tasks.Significance: Compared with the MFBTSM algorithm, the algorithm proposed in this article is expected to select frequency bands with good separability for specific subject to improve the classification accuracy of multiclass MI tasks and reduce the feature dimension to reduce training time and testing time.


2020 ◽  
Vol 7 ◽  
Author(s):  
Angel J. Valencia ◽  
Pierre Payeur

Modeling deformable objects is an important preliminary step for performing robotic manipulation tasks with more autonomy and dexterity. Currently, generalization capabilities in unstructured environments using analytical approaches are limited, mainly due to the lack of adaptation to changes in the object shape and properties. Therefore, this paper proposes the design and implementation of a data-driven approach, which combines machine learning techniques on graphs to estimate and predict the state and transition dynamics of deformable objects with initially undefined shape and material characteristics. The learned object model is trained using RGB-D sensor data and evaluated in terms of its ability to estimate the current state of the object shape, in addition to predicting future states with the goal to plan and support the manipulation actions of a robotic hand.


2019 ◽  
Vol 16 (3) ◽  
pp. 172988141984889
Author(s):  
Yew Cheong Hou ◽  
Khairul Salleh Mohamed Sahari ◽  
Dickson Neoh Tze How

In this article, we present a review on the recent advancement in flexible deformable object modeling for dexterous manipulation in robotic system. Flexible deformable object is one of the most research topics in computer graphic, computer vision, and robotic literature. The deformable models are known as the construction of object with material parameters in virtual environment to describe the deformation behavior. Existing modeling techniques and different types of deformable model are described. Various approaches of deformable object modeling have been used in robotic recognition and manipulation in order to reduce the time and cost to obtain more accurate result. In robotic manipulation, object detection, classification, and recognition of deformable objects are always a challenging problem and required as a first step to imbue the robot to able handle these deformable objects. Furthermore, the dexterity of robot control is also another essential key in handling of deformable object which its manipulation strategies need to plan intelligently for each sequence process. We also discuss some deserving direction for further research based on most current contribution.


2020 ◽  
Vol 5 (2) ◽  
pp. 2443-2450 ◽  
Author(s):  
Konstantinos Chatzilygeroudis ◽  
Bernardo Fichera ◽  
Ilaria Lauzana ◽  
Fanjun Bu ◽  
Kunpeng Yao ◽  
...  

2020 ◽  
Vol 7 ◽  
Author(s):  
Veronica E. Arriola-Rios ◽  
Puren Guler ◽  
Fanny Ficuciello ◽  
Danica Kragic ◽  
Bruno Siciliano ◽  
...  

2018 ◽  
Vol 37 (7) ◽  
pp. 688-716 ◽  
Author(s):  
Jose Sanchez ◽  
Juan-Antonio Corrales ◽  
Belhassen-Chedli Bouzgarrou ◽  
Youcef Mezouar

We present a survey of recent work on robot manipulation and sensing of deformable objects, a field with relevant applications in diverse industries such as medicine (e.g. surgical assistance), food handling, manufacturing, and domestic chores (e.g. folding clothes). We classify the reviewed approaches into four categories based on the type of object they manipulate. Furthermore, within this object classification, we divide the approaches based on the particular task they perform on the deformable object. Finally, we conclude this survey with a discussion of the current state-of-the-art approaches and propose future directions within the proposed classification.


Sign in / Sign up

Export Citation Format

Share Document