Evaluation of Lumbar Burdens for Endoskeleton-Type Assist Suit Based on Musculoskeletal Model and Its Improvement of the Utility

Author(s):  
Chiharu Ishii ◽  
Kouhei Takahashi
2021 ◽  
Vol 11 (5) ◽  
pp. 2356
Author(s):  
Carlo Albino Frigo ◽  
Lucia Donno

A musculoskeletal model was developed to analyze the tensions of the knee joint ligaments during walking and to understand how they change with changes in the muscle forces. The model included the femur, tibia, patella and all components of cruciate and collateral ligaments, quadriceps, hamstrings and gastrocnemius muscles. Inputs to the model were the muscle forces, estimated by a static optimization approach, the external loads (ground reaction forces and moments) and the knee flexion/extension movement corresponding to natural walking. The remaining rotational and translational movements were obtained as a result of the dynamic equilibrium of forces. The validation of the model was done by comparing our results with literature data. Several simulations were carried out by sequentially removing the forces of the different muscle groups. Deactivation of the quadriceps produced a decrease of tension in the anterior cruciate ligament (ACL) and an increase in the posterior cruciate ligament (PCL). By removing the hamstrings, the tension of ACL increased at the late swing phase, while the PCL force dropped to zero. Specific effects were observed also at the medial and lateral collateral ligaments. The removal of gastrocnemius muscles produced an increase of tension only on PCL and lateral collateral ligaments. These results demonstrate how musculoskeletal models can contribute to knowledge about complex biomechanical systems as the knee joint.


Author(s):  
Alienor L. Bardin ◽  
Liqiong Tang ◽  
Luca Panizzi ◽  
Chris W. Rogers ◽  
G. Robert Colborne

2013 ◽  
Vol 216 (19) ◽  
pp. 3709-3723 ◽  
Author(s):  
M. C. O'Neill ◽  
L.-F. Lee ◽  
S. G. Larson ◽  
B. Demes ◽  
J. T. Stern ◽  
...  

Author(s):  
Seyyed Arash Haghpanah ◽  
Morteza Farrokhnia ◽  
Sajjad Taghvaei ◽  
Mohammad Eghtesad ◽  
Esmaeal Ghavanloo

Functional electrical stimulation (FES) is an effective method to induce muscle contraction and to improve movements in individuals with injured central nervous system. In order to develop the FES systems for an individual with gait impairment, an appropriate control strategy must be designed to accurate tracking performance. The goal of this study is to present a method for designing proportional-derivative (PD) and sliding mode controllers (SMC) for the FES applied to the musculoskeletal model of an ankle joint to track the desired movements obtained by experiments on two healthy individuals during the gait cycle. Simulation results of the developed controller on musculoskeletal model of the ankle joint illustrated that the SMC is able to track the desired movements more accurately than the PD controller and prevents oscillating patterns around the experimentally measured data. Therefore, the sliding mode as the nonlinear method is more robust in face to unmodeled dynamics and model errors and track the desired path smoothly. Also, the required control effort is smoother in SMC with respect to the PD controller because of the nonlinearity.


2020 ◽  
Vol 2020 (0) ◽  
pp. J23208
Author(s):  
Takanori HORIBA ◽  
Kotaro SUZUKI ◽  
Takanori MIURA ◽  
Akira KOMATSU ◽  
Takehiro IWAMI ◽  
...  

2014 ◽  
Vol 24 (6) ◽  
pp. 2697-2706
Author(s):  
Zhen-hai Gao ◽  
Da Fan ◽  
Deping Wang ◽  
Hui Zhao ◽  
Kaishu Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document