A floating-gate transistor based continuous-time analog adaptive filter

Author(s):  
Jordan Gray ◽  
Venkatesh Srinivasan ◽  
Ryan Robucci ◽  
Paul Hasler
Author(s):  
B. Granados-Rojas ◽  
M. A. Reyes-Barranca ◽  
Y. E. González-Navarro ◽  
G. S. Abarca-Jiménez ◽  
M. A. Alemán-Arce ◽  
...  

Author(s):  
Abderrezak Marzaki ◽  
V. Bidal ◽  
R. Laffont ◽  
W. Rahajandraibe ◽  
J-M. Portal ◽  
...  

This paper presents different low voltage adjustable CMOS Schmitt trigger using DCG-FGT transistor. Simple circuits are introduced to provide flexibility to program the hysteresic threshold in this paper. The hysteresis can be controlled accurately at a large voltage range. The proposed Schmitt trigger have been designed using 90nm 1.2V CMOS technology and simulated using Eldo with PSP device models. The simulation results show rail-to-rail operation and adjustable switching voltages <em>V<sub>TH- </sub></em>(low switching voltage) and <em>V<sub>TH+ </sub></em>(high switching voltage).


Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 722
Author(s):  
Mao ◽  
Yang ◽  
Ma ◽  
Yan ◽  
Zhang

A smart floating gate transistor with two control gates was proposed for active noise control in bioelectrical signal measurement. The device, which is low cost and capable of large-scale integration, was implemented in a standard single-poly complementary metal–oxide–semiconductor (CMOS) process. A model of the device was developed to demonstrate the working principle. Theoretical analysis and simulation results proved the superposition of the two control gates. A series of test experiments were carried out and the results showed that the device was in accordance with the basic electrical characteristics of a floating gate transistor, including the current–voltage (I–V) characteristics and the threshold characteristics observed on the two control gates. Based on the source follower circuit, the experimental results proved that the device can reduce interference by more than 29 dB, which demonstrates the feasibility of the proposed device for active noise control.


Author(s):  
A. Ivanov ◽  
S. Rafiq ◽  
M. Renovell ◽  
F. Azais ◽  
Y. Bertrand

2020 ◽  
Vol 185 ◽  
pp. 04071
Author(s):  
Sheng Sun ◽  
Shengdong Zhang

Organic thin-film transistor memory based on nano-floating-gate nonvolatile memory was demonstrated by a simple method. The gold nanoparticle that fabricated by thermally evaporated acted as the floating gate. Spin coated PMMA film acted as the tunneling layer. A solution-processed ambipolar semiconductor acted as the active layer. Because of the existence of both hole and electron carriers in bipolar semiconductor materials, it is more conducive to the editing and erasing of memories under positive and negative pressure. The memory based on metal nanoparticles and organic bipolar semiconductor shows good read-write function.


Sign in / Sign up

Export Citation Format

Share Document