Steady-state thermal analysis simulation of magnetic holding relay contact based on Finite element analysis

Author(s):  
Yuxin Zheng ◽  
Xingming Fan ◽  
Weijie Zhang ◽  
Xin Zhang
2010 ◽  
Vol 97-101 ◽  
pp. 3366-3370 ◽  
Author(s):  
Lei Cao ◽  
Xue Jin Shen ◽  
Ru Yan Li

Finite element analysis and corresponding experimental comparisons of temperature were performed to investigate the thermal behaviour of spherical plain bearings with self-lubricating fabric liner. Based on the theory of heat transfer, tribology and composite material mechanics, a sequentially coupled, 3D, thermo-mechanical finite element analysis model of the bearing system was built up, in which the steady-state temperature distribution from the thermal analysis was applied as a body load to the structural model. As a result, the maximum steady-state temperature of 78.1°C, von Mises stress of 299MPa, displacement of 0.0806mm along Z axis of the bearing are presented, together with the maximum contact pressure of 324MPa which are significant in the structural design and optimization of these bearings. The effect of temperature rise on the contact pressure distribution is discussed. The agreement of the temperature computation results with the experimental data indicates that this method could be used to analyze virtually any such bearing.


1991 ◽  
Vol 58 (3) ◽  
pp. 820-824 ◽  
Author(s):  
A. Bogobowicz ◽  
L. Rothenburg ◽  
M. B. Dusseault

A semi-analytical solution for plane velocity fields describing steady-state incompressible flow of nonlinearly viscous fluid into an elliptical opening is presented. The flow is driven by hydrostatic pressure applied at infinity. The solution is obtained by minimizing the rate of energy dissipation on a sufficiently flexible incompressible velocity field in elliptical coordinates. The medium is described by a power creep law and solutions are obtained for a range of exponents and ellipse eccentricites. The obtained solutions compare favorably with results of finite element analysis.


Author(s):  
Oscar O. Rodriguez ◽  
Arturo A. Fuentes ◽  
Constantine Tarawneh ◽  
Robert E. Jones

Thermoplastic elastomers (TPE’s) are increasingly being used in rail service in load damping applications. They are superior to traditional elastomers primarily in their ease of fabrication. Like traditional elastomers they offer benefits including reduction in noise emissions and improved wear resistance in metal components that are in contact with such parts in the railcar suspension system. However, viscoelastic materials, such as the railroad bearing thermoplastic elastomer suspension element (or elastomeric pad), are known to develop self-heating (hysteresis) under cyclic loading, which can lead to undesirable consequences. Quantifying the hysteresis heating of the pad during operation is therefore essential to predict its dynamic response and structural integrity, as well as, to predict and understand the heat transfer paths from bearings into the truck assembly and other contacting components. This study investigates the internal heat generation in the suspension pad and its impact on the complete bearing assembly dynamics and thermal profile. Specifically, this paper presents an experimentally validated finite element thermal model of the elastomeric pad and its internal heat generation. The steady-state and transient-state temperature profiles produced by hysteresis heating of the elastomer pad are developed through a series of experiments and finite element analysis. The hysteresis heating is induced by the internal heat generation, which is a function of the loss modulus, strain, and frequency. Based on previous experimental studies, estimations of internally generated heat were obtained. The calculations show that the internal heat generation is impacted by temperature and frequency. At higher frequencies, the internally generated heat is significantly greater compared to lower frequencies, and at higher temperatures, the internally generated heat is significantly less compared to lower temperatures. However, during service operation, exposure of the suspension pad to higher loading frequencies above 10 Hz is less likely to occur. Therefore, internal heat generation values that have a significant impact on the suspension pad steady-state temperature are less likely to be reached. The commercial software package ALGOR 20.3TM is used to conduct the thermal finite element analysis. Different internal heating scenarios are simulated with the purpose of obtaining the bearing suspension element temperature distribution during normal and abnormal conditions. The results presented in this paper can be used in the future to acquire temperature distribution maps of complete bearing assemblies in service conditions and enable a refined model for the evolution of bearing temperature during operation.


2010 ◽  
Vol 159 ◽  
pp. 697-702
Author(s):  
Ying Zhou ◽  
Ya Xi Tan

A three-dimensional coupled fluid-thermal finite element simulation model has been developed to provide analyzing distribution of velocity and temperature of nine-spacer nozzle by using FEM simulation of FLOTRAN module in ANSYS 6.0. To explore fluid-thermal analysis of the flow fields of nine-spacer nozzle of aluminum roll-casting, stricter analysis of postprocessing result was conducted by MATLAB. It was concluded that flow field of nine-spacer nozzle was able to match cooling capacity of cast rollers, but nine-spacer nozzle’s geometric flaw didn’t suit for working in the case of speed increasing of the drawing-sheet and thickness reducing of the aluminium sheet during roll casting.


1990 ◽  
Vol 112 (2) ◽  
pp. 398-403 ◽  
Author(s):  
G. Bayada ◽  
M. Chambat ◽  
M. El Alaoui

In this paper gaseous cavitation in steady-state and transient lubrication problems is considered. Both conventional numerical procedures, associated with the Reynolds cavitation model, and a new finite element analysis for implementation of the Jakobson-Floberg model are presented. Applications to circumferentially supplied bearings and to seals are given.


2009 ◽  
Vol 87-88 ◽  
pp. 518-523 ◽  
Author(s):  
Jing Li ◽  
Yan He ◽  
Zhen Chao Chen

Based on the Adina finite element analysis software, 3D axisymmetric finite element analysis model of the 205/75R15 PCR tire was established, the steady temperature field of rolling tire was simulated, and the thermal distribution colored cloud diagram of steady-state temperature field of 3D rolling tire which directly shows the temperature distribution of each section of tire was analyzed to offer certain guidance to the improvement of tire structure and rubber formula.


Sign in / Sign up

Export Citation Format

Share Document