Dielectric strength of vacuum contact gap after making current and no-load contact opening

Author(s):  
Z. Zalucki ◽  
J. Kutzner
Keyword(s):  
2003 ◽  
Vol 766 ◽  
Author(s):  
Ahila Krishnamoorthy ◽  
N.Y. Huang ◽  
Shu-Yunn Chong

AbstractBlack DiamondTM. (BD) is one of the primary candidates for use in copper-low k integration. Although BD is SiO2 based, it is vastly different from oxide in terms of dielectric strength and reliability. One of the main reliability concerns is the drift of copper ions under electric field to the surrounding dielectric layer and this is evaluated by voltage ramp (V-ramp) and time dependent dielectric breakdown (TDDB). Metal 1 and Metal 2 intralevel comb structures with different metal widths and spaces were chosen for dielectric breakdown studies. Breakdown field of individual test structures were obtained from V-ramp tests in the temperature range of 30 to 150°C. TDDB was performed in the field range 0.5 – 2 MV/cm. From the leakage between combs at the same level (either metal 1 or metal 2) Cu drift through SiC/BD or SiN/BD interface was characterized. It was found that Cu/barrier and barrier/low k interfaces functioned as easy paths for copper drift thereby shorting the lines. Cu/SiC was found to provide a better interface than Cu/SiN.


2020 ◽  
Vol 38 (3B) ◽  
pp. 104-114
Author(s):  
Samah M. Hussein

This research has been done by reinforcing the matrix (unsaturated polyester) resin with natural material (date palm fiber (DPF)). The fibers were exposure to alkali treatment before reinforcement. The samples have been prepared by using hand lay-up technique with fiber volume fraction of (10%, 20% and 30%). After preparation of the mechanical and physical properties have been studied such as, compression, flexural, impact strength, thermal conductivity, Dielectric constant and dielectric strength. The polyester composite reinforced with date palm fiber at volume fraction (10% and 20%) has good mechanical properties rather than pure unsaturated polyester material, while the composite reinforced with 30% Vf present poor mechanical properties. Thermal conductivity results indicated insulator composite behavior. The effect of present fiber polar group induces of decreasing in dielectric strength, and increasing dielectric constant. The reinforcement composite 20% Vf showed the best results in mechanical, thermal and electrical properties.


2012 ◽  
Vol 15 (2-3) ◽  
pp. 157-168 ◽  
Author(s):  
Mireille Bechara ◽  
Rabih Khazaka ◽  
Sombel Diaham ◽  
Marie-Laure Locatelli ◽  
Pierre Bidan

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3742
Author(s):  
Paweł Węgierek ◽  
Michał Lech ◽  
Damian Kostyła ◽  
Czesław Kozak

This paper presents the results of a comparative analysis of the dielectric strength of disconnecting vacuum interrupters operating on air and helium. The breakdown voltage Ud was measured in the pressure range from 8.0 × 10−4 Pa to 3.0 × 101 Pa for air and from 8.0 × 10−4 Pa to 7.0 × 102 Pa for helium, while varying the interelectrode distance from 1.0 to 5.0 mm. Dedicated laboratory workstations were used to determine the actual pressure values in the vacuum interrupters tested and to precisely measure and record the dielectric strength results of the test object. It was found that the helium-filled vacuum interrupter maintains its full dielectric strength in significantly larger pressure ranges, while the air-filled vacuum interrupter loses its insulating properties. Thus, it is possible to make vacuum interrupters based on the working medium associated with pure helium, with larger working pressure ratings. Under such conditions, it is easier to maintain the tightness of the device and to limit cut-off currents and overvoltages associated with vacuum switchgear.


Author(s):  
Kerong Yang ◽  
Weijiang Chen ◽  
Yushun Zhao ◽  
Yu He ◽  
Xin Chen ◽  
...  

2016 ◽  
Vol 44 (6) ◽  
pp. 973-979 ◽  
Author(s):  
Nathan D. Zameroski ◽  
Kathrin Spendier ◽  
David Kerwin ◽  
Michael Spencer ◽  
Jonathan M. Parson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document