A Study of Some Mechanical and Physical Properties for Palm Fiber/Polyester Composite

2020 ◽  
Vol 38 (3B) ◽  
pp. 104-114
Author(s):  
Samah M. Hussein

This research has been done by reinforcing the matrix (unsaturated polyester) resin with natural material (date palm fiber (DPF)). The fibers were exposure to alkali treatment before reinforcement. The samples have been prepared by using hand lay-up technique with fiber volume fraction of (10%, 20% and 30%). After preparation of the mechanical and physical properties have been studied such as, compression, flexural, impact strength, thermal conductivity, Dielectric constant and dielectric strength. The polyester composite reinforced with date palm fiber at volume fraction (10% and 20%) has good mechanical properties rather than pure unsaturated polyester material, while the composite reinforced with 30% Vf present poor mechanical properties. Thermal conductivity results indicated insulator composite behavior. The effect of present fiber polar group induces of decreasing in dielectric strength, and increasing dielectric constant. The reinforcement composite 20% Vf showed the best results in mechanical, thermal and electrical properties.

2011 ◽  
Vol 1 (2) ◽  
Author(s):  
Wijoyo Wijoyo ◽  
Achmad Nurhidayat ◽  
Catur Purnomo

The purpose of this study is to investigate the influence of fiber volume fraction of the impact strength of palm fiber-unsaturated polyester composite and investigate the mechanism of fracture caused by impact loads. This research material is palm fiber (Arenga pinnata), unsaturated polyester matrix yukalac BQTN-EX 157 type, hardener metyl etyl ketone peroxide (MEKPO), alkali solution (NaOH) and H2O. Testing with Charpy impact tester, impact test specimens prepared according to standard test ASTM D-5942. While the macro picture is used for the analysis of the fracture. The results showed that the most optimum impact toughness of palm fiber-polyester composite reached 0.011 J/mm2 on volume fraction (Vf) 40%. While the interaction characteristics of palm-fiber bond strength polyester showed matrix cracking behavior of failure on volume fraction (Vf) 10% to 30%, and fiber pull out the volume fraction (Vf) 40% and 50%, the same fracture behavior between the matrix and fibers in volume fraction (Vf) 40% indicates that fiber and matrix has a strong bonding interaction.


2020 ◽  
Vol 148 ◽  
pp. 316-323
Author(s):  
Fatima-Zahra Semlali Aouragh Hassani ◽  
Khadija El Bourakadi ◽  
Nawal Merghoub ◽  
Abou el kacem Qaiss ◽  
Rachid Bouhfid

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
J. Sahari ◽  
M. A. Maleque

The mechanical properties of oil palm shell (OPS) composites were investigated with different volume fraction of OPS such as 0%, 10%, 20%, and 30% using unsaturated polyester (UPE) as a matrix. The results presented that the tensile strength and tensile modulus of the UPE/OPS composites increased as the OPS loading increased. The highest tensile modulus of UPE/OPS was obtained at 30 vol% of OPS with the value of 8.50 GPa. The tensile strength of the composites was 1.15, 1.17, and 1.18 times higher than the pure UPE matrix for 10, 20, and 30 vol% of OPS, respectively. The FTIR spectra showed the change of functional group of composites with different volume fractions of OPS. SEM analysis shows the filler pull-out present in the composites which proved the poor filler-matrix interfacial bonding.


2013 ◽  
Vol 465-466 ◽  
pp. 962-966 ◽  
Author(s):  
Mohd Pahmi bin Saiman ◽  
Mohd Saidin Bin Wahab ◽  
Mat Uzir Wahit

To produce a good quality of dry fabric for reinforced material in a natural-based polymer composite, yarn linear density should be in consideration. A woven kenaf dry fabric with three different linear densities of 276tex, 413.4tex and 759tex were produced. The fabrics with different linear densities were been optimize with the assistance of WiseTex software. The optimized dry fabrics were infused with unsaturated polyester to produce composite panel using vacuum infusion process. The composites properties were tested on the tensile strength, flexural strength and the impact strength. The result shows that the mechanical properties of the composite increased when the yarn linear densities increased.


2013 ◽  
Vol 27 (19) ◽  
pp. 1341025 ◽  
Author(s):  
YU HONG ◽  
XIAOLI CHEN ◽  
WENFANG WANG ◽  
YUCHENG WU

Copper-matrix composites reinforced with SiC particles are prepared by mechanical alloying. The microstructure characteristics, relative density, hardness, tensile strength, electrical conductivity, thermal conductivity and wear properties of the composites are investigated in this paper. The results indicate that the relative density, macro-hardness and mechanical properties of composites are improved by modifying the surface of SiC particles with Cu and Ni . The electrical conductivity and thermal conductivity of composites, however, are not obviously improved. For a given volume fraction of SiC , the Cu / SiC ( Ni ) has higher mechanical properties than Cu / SiC ( Cu ). The wear resistance of the composites are improved by the addition of SiC . The composites with optimized interface have lower wear rate.


2021 ◽  
Author(s):  
Aliyu Yaro ◽  
Laminu Kuburi ◽  
Musa Abiodun Moshood

Abstract Polymeric materials are used in different industrial applications because they retain good environmental properties, low-cost, and easy to produce compared to conventional materials. This study investigated the effect of adding kaolin micro-filler (KF) on the mechanical properties of Luffa Fiber (LCF) reinforced polyester resin. Luffa cylindrica fiber treated with 5% NaOH, varied in weight fraction (5, 10, and 15%wt) was used to reinforce unsaturated polyester resin using hand lay-up method, whereas for the hybrid composite kaolin filler were kept constant at 6wt% fraction while the fibers varied as in the mono-reinforced composite. The samples were machined for mechanical and microstructural analysis. Analysis of the result revealed that the addition of kaolin has enhanced greatly the mechanical properties of Luffa-fibre based composites. The result reveal of the microstructure analysis, shows that there is an improvement in fiber-matrix adhesion.


2021 ◽  
Vol 25 (Special) ◽  
pp. 2-72-2-77
Author(s):  
Hassanein M. Nhoo ◽  
◽  
Raad. M. Fenjan ◽  
Ahmed A. Ayash ◽  
◽  
...  

The current paper deals with investigating the effect of two different fillers on the thermal and mechanical characteristics of epoxy-based composite. The filler used throughout the study are: charcoal and Pyrex, both of them are different in nature and have not been investigated thoroughly or even compared fairly in terms of their effect on polymer matrix. Further, they can be considered as a cheap filler, charcoal can be obtained from a simple pyrolysis process of plants (charcoal) and Pyrex waste can be collected easily. Both types are added to the selected matrix with volume percent ranged from 10 to 60 with increments of 10. To ensure a fair comparison, the particle size is fixed (is about 1.7 micrometer). The results showed that the epoxy thermal conductivity has enhanced by about two orders of magnitudes over the studied range of filler. In terms of mechanical properties, the charcoal improves the tensile strength about 84% at 60% volume fraction while the Pyrex effect is about 40% at the same filler level. On the contrast, the results of compressive strength do not show an appreciable improvement overall. It decreases by about 12% at 60% volume fraction of charcoal while increases about the same percent with Pyrex at the same filler level.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 285 ◽  
Author(s):  
Jiangzhuo Ren ◽  
Fengzhang Ren ◽  
Fengjun Li ◽  
Linkai Cui ◽  
Yi Xiong ◽  
...  

Flake (FGI) and spheroidal (SGI) graphite cast irons are often used to produce workpieces, which often need to be machined. Machinability differences under various machining methods are the basis for choosing machining equipment and technology. In this work, FGI and SGI were used to produce tractor front brackets, and the machinability of both materials under turning and drilling processes was compared. The machinability (turning and drilling ability) has been evaluated in terms of machining load, chips shape, surface roughness, and tool temperature. The influence of materials microstructure and thermal conductivity on the machinability was analyzed. In the turning process, the cutting force and its standard deviation of the FGI were larger than the SGI due to the higher volume fraction of pearlite. The surface roughness was similar in both materials. In the drilling process, the even action of the friction and cutting force on the bit turned into similar drilling loads for both materials. Higher friction and lower thermal conductivity caused a higher bit temperature in SGI drilling compared to FGI. The chip breaking was worse in SGI drilling, where the longer chips scratched the internal surface of the holes, resulting in the higher surface roughness.


2018 ◽  
Vol 773 ◽  
pp. 94-99 ◽  
Author(s):  
Venitalitya Augustia ◽  
Achmad Chafidz ◽  
Lucky Setyaningsih ◽  
Muhammad Rizal ◽  
Mujtahid Kaavessina ◽  
...  

The trend of using natural fibers as green filler in the fabrication of polymer composites is increasing. One of these natural fibers is date palm fiber (DPF). Date palm fiber is considered as agricultural waste in certain areas, such as Middle East countries. Therefore, the utilization of this fiber in the composites fabrication is an interesting topic of research. In the current study, composites were prepared by melt blending DPF with high density polyethylene (HDPE). Five different DPF loadings were studied (i.e. 0, 5, 10, 20, 30 wt%). The effect of the DPF loadings on the mechanical properties and water absorption behavior of the composites were investigated. The tensile test result showed that tensile strengths of all the composites samples were all higher than the neat HDPE with the maximum improvement was achieved at the DPF loading of 5 wt% (i.e. DFC-5), which was about 19.23 MPa (138% higher than the neat HDPE). Whereas, the flexural test result showed that the flexural strength of the composites slightly increased compared to that of the neat HDPE only until 5 wt% DPF loading (i.e. DFC-5). Afterward, the flexural strength of the DFC-10 was equal to that of the neat HDPE, and decreasing with further increase of DPF loadings. Additionally, the water absorption test result showed that the water absorption rate and uptake of water (at equilibrium) increased with the increase of DPF loading.


Sign in / Sign up

Export Citation Format

Share Document