Modeling and Forecasting of Tourism Time Series Data using ANN-Fourier Series Model and Monte Carlo Simulation

Author(s):  
Salim Jibrin Danbatta ◽  
Asaf Varol
2019 ◽  
Vol 8 (4) ◽  
pp. 418-427
Author(s):  
Eko Siswanto ◽  
Hasbi Yasin ◽  
Sudarno Sudarno

In many applications, several time series data are recorded simultaneously at a number of locations. Time series data from nearby locations often to be related by spatial and time. This data is called spatial time series data. Generalized Space Time Autoregressive (GSTAR) model is one of space time models used to modeling and forecasting spatial time series data. This study applied GTSAR model to modeling volume of rainfall four locations in Jepara Regency, Kudus Regency, Pati Regency, and Grobogan Regency. Based on the smallest RMSE mean of forecasting result, the best model chosen by this study is GSTAR (11)-I(1)12 with the inverse distance weighted. Based on GSTAR(11)-I(1)12 with the inverse distance weighted, the relationship between the location shown on rainfall Pati Regency influenced by the rainfall in other regencies. Keywords: GSTAR, RMSE, Rainfall


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 349-356
Author(s):  
J. HAZARIKA ◽  
B. PATHAK ◽  
A. N. PATOWARY

Perceptive the rainfall pattern is tough for the solution of several regional environmental issues of water resources management, with implications for agriculture, climate change, and natural calamity such as floods and droughts. Statistical computing, modeling and forecasting data are key instruments for studying these patterns. The study of time series analysis and forecasting has become a major tool in different applications in hydrology and environmental fields. Among the most effective approaches for analyzing time series data is the ARIMA (Autoregressive Integrated Moving Average) model introduced by Box and Jenkins. In this study, an attempt has been made to use Box-Jenkins methodology to build ARIMA model for monthly rainfall data taken from Dibrugarh for the period of 1980- 2014 with a total of 420 points.  We investigated and found that ARIMA (0, 0, 0) (0, 1, 1)12 model is suitable for the given data set. As such this model can be used to forecast the pattern of monthly rainfall for the upcoming years, which can help the decision makers to establish priorities in terms of agricultural, flood, water demand management etc.  


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1078
Author(s):  
Ruxandra Stoean ◽  
Catalin Stoean ◽  
Miguel Atencia ◽  
Roberto Rodríguez-Labrada ◽  
Gonzalo Joya

Uncertainty quantification in deep learning models is especially important for the medical applications of this complex and successful type of neural architectures. One popular technique is Monte Carlo dropout that gives a sample output for a record, which can be measured statistically in terms of average probability and variance for each diagnostic class of the problem. The current paper puts forward a convolutional–long short-term memory network model with a Monte Carlo dropout layer for obtaining information regarding the model uncertainty for saccadic records of all patients. These are next used in assessing the uncertainty of the learning model at the higher level of sets of multiple records (i.e., registers) that are gathered for one patient case by the examining physician towards an accurate diagnosis. Means and standard deviations are additionally calculated for the Monte Carlo uncertainty estimates of groups of predictions. These serve as a new collection where a random forest model can perform both classification and ranking of variable importance. The approach is validated on a real-world problem of classifying electrooculography time series for an early detection of spinocerebellar ataxia 2 and reaches an accuracy of 88.59% in distinguishing between the three classes of patients.


2018 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Achmad Dimas ◽  
Muhammad Azhari ◽  
Khairunnisa Khairunnisa

The government’s policy, the Indonesian Ulema Council’s (MUI) fatwa, the rise of cigarette issues and anti-smoking campaigns have been a major challenge for the tobacco industry in managing risks. Through this research, the issues will be measured by VaR to know the risk of the company’s shares of cigarette sub sector by using time series data and analyzed by using the simulation method of Historis and Monte Carlo. The results showed the VaR value of GGRM and HMSP stock with the historical method is 3.28 and 2.54%. While the value of VaR shares GGRM and HMSP with Monte Carlo method is 3.52% and 3.14%. Monte Carlo simulation gives greater result than Historical Simulation, because Monte Carlo simulation do iteration repeatedly by involving random number generation and many synthesize the data so that sample data becomes more which makes the calculation is bigger.


2020 ◽  
Vol 13 (02) ◽  
pp. 1-8
Author(s):  
Agrienvi

ABSTRACTChili is one of the leading commodities of vegetables which has strategic value at national and regional levels.An unexpected increase in chili prices often results a surge of inflation and economic turmoil. Study and modeling ofchili production are needed as a planning and evaluation material for policy makers. One of the most frequently usedmethods in modeling and forecasting time series data is Autoregressive Integrated Moving Avarage (ARIMA). Theresults of ARIMA modeling on chili production data found that the data were unstationer conditions of the mean so thatmust differenced while the data on the production of small chilli carried out the stages of data transformation anddifferencing due to the unstationer of data on variants and the mean. The best ARIMA model that can be applied basedon the smallest AIC and MSE criteria for data on the amount of chili and small chilli production in Central KalimantanProvince is ARIMA (3,1,0).Keywords: modeling of chilli, forecasting of chilli, Autoregresive Integrated Moving Avarage, ARIMA, Box-Jenkins.


2007 ◽  
Vol 46 (02) ◽  
pp. 96-101 ◽  
Author(s):  
T. Matsumoto

Summary Objectives : Given time-series data from an unknown target system, one often wants to build a model for the system behind the data and make predictions. If the target system can be assumed to be linear, there are means of modeling and predicting the target system in question. If, however, one cannot assume the system is linear, various linear theories have natural limitations in terms of modeling and predictive capabilities. This paper attempts to construct a model from time-series data and make an online prediction when the linear assumption is not valid. Methods : The problem is formulated within a Bayesian framework implemented by the Sequential Monte Carlo method. Online Bayesian learning/prediction requires computation of a posterior distribution in a sequential manner as each datum arrives. The Sequential Monte Carlo method computes the importance weight in order to draw sample from the posterior distribution. The scheme is tested against time-series data from a noisy Rossler system. Results : The test time-series data is the x-coordinate of the trajectory generated by a noisy Roessler system. Attempts are made with regard to online reconstruction of the attractor and online prediction of the time-series data. Conclusions : The proposed algorithm appears to be functional. The algorithm should be tested against real world data.


Sign in / Sign up

Export Citation Format

Share Document