Development of Low-Power dc-SQUIDs for TES Frequency-Division Multiplexing Readout Towards Future Space Missions

Author(s):  
Kazuhiro Sakai ◽  
Ryo Yamamoto ◽  
Yoh Takei ◽  
Noriko Y. Yamasaki ◽  
Kazuhisa Mitsuda ◽  
...  
2019 ◽  
Vol 9 (16) ◽  
pp. 3289 ◽  
Author(s):  
Huy Nguyen ◽  
Nam Tuan Le ◽  
Nguyen Cong Hoan ◽  
Yeong Min Jang

In order to develop wireless sensor networks, which are defined by the IEEE 802.15.4 specification, researchers are considering low-power wide-area networks (LPWAN) due to their advantages of being long range, low power, low cost, and highly mobile. The issue of mobility is covered in the IEEE 802.15.4g standard for supporting a smart utility network (SUN), which is mainly controlled by orthogonal frequency-division multiplexing (OFDM) modulation. In a high mobility scenario, inter-carrier interference is a primary factor in reducing the performance of OFDM transmissions due to the destruction of the subcarrier component’s orthogonality. This paper analyzes the mobility effect in multi-rate multi-regional orthogonal frequency-division multiplexing (MR-OFDM) for low-power wide-area networks in general, and the SUN MR-OFDM system in particular. As mentioned in standard 802.15.4 2015, IEEE 802.15.4g MR-OFDM is one of the low-power wide-area (LPWA) technologies in which energy optimization problems are of first priority. We are especially interested in simple technologies that provide high efficiency. Therefore, we propose a highly adaptive method that uses the cyclic prefix to mitigate the mobility effect in real time. At a symbol frames interval of 120 us, the Doppler shift effect from the mobility of the MR-OFDM system adapted smoothly. This is not the best method to mitigate Doppler shift but it is a simple method that suits the LPWA network. The proposed scheme clearly simulated the mobility of the MR-OFDM system, and had the advantage of using a cyclic-prefix with a bit error rate performance through Additive White Gaussian Noise (AWGN) and the Rician channel of Matlab.


2018 ◽  
Vol 7 (1.9) ◽  
pp. 41
Author(s):  
K Jayaram ◽  
Dr C.Arun

Wireless communication system is a key element in modern uninterupted data tramsnission and reception services. In this paper, multi user Orthogonal Frequency Division Multiplexing (OFDM) system is designed with low power encoder and adaptive modualtion architectures. The proposed multi user encoder architecture is designed in Verlog HDL and simulated in Modelsim simulator. Xilinx Project Navigator is used to evaluate the performance of the proposed architecture interms of power consumptions and hardware utilizations by implementing the architecture on different virtex processors.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 313
Author(s):  
Chin-Feng Lin ◽  
Cheng-Fong Wu ◽  
Ching-Lung Hsieh ◽  
Shun-Hsyung Chang ◽  
Ivan A. Parinov ◽  
...  

In this paper, a low-power underwater acoustic (UWA) image transceiver based on generalized frequency division multiplexing (GFDM) modulation for underwater communication is proposed. The proposed transceiver integrates a low-density parity-check code error protection scheme, adaptive 4-quadrature amplitude modulation (QAM) and 16-QAM strategies, GFDM modulation, and a power assignment mechanism in an UWA image communication environment. The transmission bit error rates (BERs), the peak signal-to-noise ratios (PSNRs) of the received underwater images, and the power-saving ratio (PSR) of the proposed transceiver obtained using 4-QAM and 16-QAM, with perfect channel estimation, and channel estimation errors (CEEs) of 5%, 10%, and 20% were simulated. The PSNR of the received underwater image is 44.46 dB when using 4-QAM with a CEE of 10%. In contrast, PSNR is 48.79 dB when using 16-QAM with a CEE of 10%. When BER is 10−4, the received UW images have high PSNR values and high resolutions, indicating that the proposed transceiver is suitable for underwater image sensor signal transmission.


Sign in / Sign up

Export Citation Format

Share Document