Development status of low power arc-jet engines and their applicability to near future space missions

1964 ◽  
Author(s):  
W. GEIDEMAN, JR. ◽  
K. MULLER ◽  
J. ROSENBERY
1965 ◽  
Vol 2 (5) ◽  
pp. 718-723 ◽  
Author(s):  
WILLIAM A. GEIDEMAN ◽  
KURT MULLER

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jochen Hinkelbein ◽  
Anton Ahlbäck ◽  
Christine Antwerber ◽  
Lisa Dauth ◽  
James DuCanto ◽  
...  

AbstractIn the next few years, the number of long-term space missions will significantly increase. Providing safe concepts for emergencies including airway management will be a highly challenging task. The aim of the present trial is to compare different airway management devices in simulated microgravity using a free-floating underwater scenario. Five different devices for airway management [laryngeal mask (LM), laryngeal tube (LT), I-GEL, direct laryngoscopy (DL), and video laryngoscopy (VL)] were compared by n = 20 paramedics holding a diving certificate in a randomized cross-over setting both under free-floating conditions in a submerged setting (pool, microgravity) and on ground (normogravity). The primary endpoint was the successful placement of the airway device. The secondary endpoints were the number of attempts and the time to ventilation. A total of 20 paramedics (3 female, 17 male) participated in this study. Success rate was highest for LM and LT and was 100% both during simulated microgravity and normogravity followed by the I-GEL (90% during microgravity and 95% during normogravity). However, the success rate was less for both DL (60% vs. 95%) and VL (20% vs. 60%). Fastest ventilation was performed with the LT both in normogravity (13.7 ± 5.3 s; n = 20) and microgravity (19.5 ± 6.1 s; n = 20). For the comparison of normogravity and microgravity, time to ventilation was shorter for all devices on the ground (normogravity) as compared underwater (microgravity). In the present study, airway management with supraglottic airways and laryngoscopy was shown to be feasible. Concerning the success rate and time to ventilation, the optimum were supraglottic airways (LT, LM, I-GEL) as their placement was faster and associated with a higher success rate. For future space missions, the use of supraglottic airways for airway management seems to be more promising as compared to tracheal intubation by DL or VL.


Cryogenics ◽  
2010 ◽  
Vol 50 (9) ◽  
pp. 597-602 ◽  
Author(s):  
Keisuke Shinozaki ◽  
Kazuhisa Mitsuda ◽  
Noriko Y. Yamasaki ◽  
Yoh Takei ◽  
Kensuke Masui ◽  
...  
Keyword(s):  

Author(s):  
Keisuke SHINOZAKI ◽  
Takehiro NOHARA ◽  
Makiko ANDO ◽  
Atsushi OKAMOTO ◽  
Masakatsu MAEDA ◽  
...  

Author(s):  
Aggelos Liapis ◽  
Evangelos Argyzoudis

The Concurrent Design Facility (CDF) of the European Space Agency (ESA) allows a team of experts from several disciplines to apply concurrent engineering for the design of future space missions. It facilitates faster and effective interaction of all disciplines involved, ensuring consistent and high-quality results. It is primarily used to assess the technical and financial feasibility of future space missions and new spacecraft concepts, though for some projects, the facilities and the data exchange model are used during later phases. This chapter focuses on the field of computer supported collaborative work (CSCW) and its supporting areas whose mission is to support interaction between people, using computers as the enabling technology. Its aim is to present the design and implementation framework of a semantically driven, collaborative working environment (CWE) that allows ESA’s CDF to be used by projects more extensively and effectively during project meetings, task forces, and reviews.


Author(s):  
David A. Rothery

Regular satellites of the giant planets have been described as ‘worlds in their own right’. ‘Regular satellites in close up’ describes the fascinating physical features and chemistry of Jupiter’s ‘Galilean moons’—Io, Europa, Ganymede, and Callisto—before considering Saturn’s moons, Titan, Enceladus, and Iapetus, as well as Miranda and Ariel, the moons of Uranus, and Triton, a moon of Neptune. These moons have very distinct characteristics and some are widely regarded as better candidates than Mars for hosting extraterrestrial life. It concludes with a look towards future space missions to observe and examine these distant moons.


2020 ◽  
Vol 124 (1276) ◽  
pp. 917-939 ◽  
Author(s):  
S.W. Paek ◽  
S. Kim ◽  
L. Kronig ◽  
O. de Weck

ABSTRACTThe development of oceanography and meteorology has greatly benefited from satellite-based data of Earth’s atmosphere and ocean. Traditional Earth observation missions have utilised Sun-synchronous orbits with repeat ground tracks due to their advantages in visible and infrared wavelengths. However, diversification of observation wavelengths and massive deployment of miniaturised satellites are both enabling and necessitating new kinds of space missions. This paper proposes several unconventional satellite orbits intended for use in, but not limited to, Earth observation. This ‘toolbox’ of orbits and taxonomy thereof will thus support the definition of design requirements for the individual satellites in nano-satellite constellations developed by national space agencies, industries and academia.


Sign in / Sign up

Export Citation Format

Share Document