Adaptive Switching Controller: A New Design of Dual Prescribed Sliding Surface and PID for Vibration Control

Author(s):  
Do Xuan Phu ◽  
Nguyen Quoc Hung
2021 ◽  
pp. 1-37
Author(s):  
Jonathan Rodriguez ◽  
Manuel Collet ◽  
Simon Chesne

Abstract This paper proposes an active modal vibration control method based on a modal sliding mode controller applied to a smart material composite structure with integrated piezoelectric transducers as actuators and sensors. First, the electromechanical coupled system is identified using a modal reduced-order model. The sliding surface is based on the modal-filtered states and designed using a general formulation allowing the control of multiple vibration modes with multiple piezoelectric sensors and actuators. The performance and stability of the nonlinear controller are addressed and confirmed with the experimental results on a composite smart spoiler-shaped structure. The nonlinear switching control signal, based on the modal-shaped sliding surface improves the performances of the linear part of the control while maintaining not only stability but also robustness. The attenuation level achieved on the target modes on all piezoelectric sensors starts from -14dB up to -22dB, illustrating the strong potential of nonlinear switching control methods in active vibration control.


2021 ◽  
Vol 11 (5) ◽  
pp. 2244
Author(s):  
Do Xuan Phu ◽  
Van Mien ◽  
Seung-Bok Choi

This paper proposes a new switching adaptive fuzzy controller and applies it to vibration control of a vehicle seat suspension equipped with a semi-active magnetorheological (MR) damper. The proposed control system consists of three functioned filters: (1) Filter 1: a model of interval type 2 fuzzy to compensate disturbances; (2) Filter 2: a ‘switching term’ to evaluate the magnitude of disturbance; and (3) Filter 3: a group of adaptation laws to enhance the robustness of control input. These filters play a role of powerful shields to improve control performance and guarantee the stability of the applied system subjected to external disturbances. After embedding a PID (proportional-integral-derivative) model into Riccati-like equation, main control parameters are updated based on the adaptation laws. The proposed controller is then synthesized in two different cases: high disturbance and small disturbance. For the high disturbance, a special type of sliding surface function, which relates to an exponential function and its t-norm, is used to increase the energy of control system. For the small disturbance, the energy from the modified t-norm of the sliding surface is neglected to reduce the energy consumption with maintaining the desired performance. To demonstrate the effectiveness of the proposed controller, a vehicle seat suspension installed with controllable MR damper is adopted to reflect the robustness against external disturbances corresponding to road excitations. It is validated from computer simulation that the proposed controller can provide better vibration control performance than other existing robust controllers showing excellent control stability with well-reduced displacement and velocity at the position of the seat.


2021 ◽  
Vol 26 (2) ◽  
pp. 04020119
Author(s):  
Peng Zhou ◽  
Min Liu ◽  
Weiming Kong ◽  
Yingmei Xu ◽  
Hui Li

2020 ◽  
Vol 64 (1-4) ◽  
pp. 729-736
Author(s):  
Jincheng He ◽  
Xing Tan ◽  
Wang Tao ◽  
Xinhai Wu ◽  
Huan He ◽  
...  

It is known that piezoelectric material shunted with external circuits can convert mechanical energy to electrical energy, which is so called piezoelectric shunt damping technology. In this paper, a piezoelectric stacks ring (PSR) is designed for vibration control of beams and rotor systems. A relative simple electromechanical model of an Euler Bernoulli beam supported by two piezoelectric stacks shunted with resonant RL circuits is established. The equation of motion of such simplified system has been derived using Hamilton’s principle. A more realistic FEA model is developed. The numerical analysis is carried out using COMSOL® and the simulation results show a significant reduction of vibration amplitude at the specific natural frequencies. Using finite element method, the influence of circuit parameters on lateral vibration control is discussed. A preliminary experiment of a prototype PSR verifies the PSR’s vibration reduction effect.


Sign in / Sign up

Export Citation Format

Share Document