Boron nitride based poly (phenylene sulfide) compsoites with enhanced thermal conductivity and breakdown strength

Author(s):  
Xingyi Huang ◽  
Wenhao Liu ◽  
Pingkai Jiang ◽  
Toshikatsu Tanaka
RSC Advances ◽  
2014 ◽  
Vol 4 (40) ◽  
pp. 21010-21017 ◽  
Author(s):  
Lijun Fang ◽  
Chao Wu ◽  
Rong Qian ◽  
Liyuan Xie ◽  
Ke Yang ◽  
...  

Nano-micro structure of modified 2-D and 0-D ceramic fillers is designed for epoxy with high thermal conductivity and breakdown strength.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3521
Author(s):  
Chuang Zhang ◽  
Jiao Xiang ◽  
Shihang Wang ◽  
Zhimin Yan ◽  
Zhuolin Cheng ◽  
...  

Micro/nano- BN co-doped epoxy composites were prepared and their thermal conductivity, breakdown strength at power frequency and voltage endurance time under high frequency bipolar square wave voltage were investigated. The thermal conductivity and breakdown performance were enhanced simultaneously in the composite with a loading concentration of 20 wt% BN at a micro/nano proportion of 95/5. The breakdown strength of 132 kV/mm at power frequency, the thermal conductivity of 0.81 W∙m−1∙K−1 and voltage endurance time of 166 s were obtained in the composites, which were approximately 28%, 286% and 349% higher than that of pristine epoxy resin. It is proposed that thermal conductive pathways are mainly constructed by micro-BN, leading to improved thermal conductivity and voltage endurance time. A model was introduced to illustrate the enhancement of the breakdown strength. The epoxy composites with high thermal conductivity and excellent breakdown performance could be feasible for insulating materials in high-frequency devices.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 373 ◽  
Author(s):  
Lorenzo Pezzana ◽  
Giacomo Riccucci ◽  
Silvia Spriano ◽  
Daniele Battegazzore ◽  
Marco Sangermano ◽  
...  

This study demonstrates the possibility of forming 3D structures with enhanced thermal conductivity (k) by vat printing a silicone–acrylate based nanocomposite. Polydimethylsiloxane (PDSM) represent a common silicone-based polymer used in several applications from electronics to microfluidics. Unfortunately, the k value of the polymer is low, so a composite is required to be formed in order to increase its thermal conductivity. Several types of fillers are available to reach this result. In this study, boron nitride (BN) nanoparticles were used to increase the thermal conductivity of a PDMS-like photocurable matrix. A digital light processing (DLP) system was employed to form complex structures. The viscosity of the formulation was firstly investigated; photorheology and attenuate total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) analyses were done to check the reactivity of the system that resulted as suitable for DLP printing. Mechanical and thermal analyses were performed on printed samples through dynamic mechanical thermal analysis (DMTA) and tensile tests, revealing a positive effect of the BN nanoparticles. Morphological characterization was performed by scanning electron microscopy (SEM). Finally, thermal analysis demonstrated that the thermal conductivity of the material was improved, maintaining the possibility of producing 3D printable formulations.


Sign in / Sign up

Export Citation Format

Share Document