Load shifting in the existing distribution network and perspectives for EV charging-case study

Author(s):  
Lauri Kutt ◽  
Eero Saarijarvi ◽  
Matti Lehtonen ◽  
Argo Rosin ◽  
Heigo Molder
Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4343
Author(s):  
Yunbo Yang ◽  
Rongling Li ◽  
Tao Huang

In recent years, many buildings have been fitted with smart meters, from which high-frequency energy data is available. However, extracting useful information efficiently has been imposed as a problem in utilizing these data. In this study, we analyzed district heating smart meter data from 61 buildings in Copenhagen, Denmark, focused on the peak load quantification in a building cluster and a case study on load shifting. The energy consumption data were clustered into three subsets concerning seasonal variation (winter, transition season, and summer), using the agglomerative hierarchical algorithm. The representative load profile obtained from clustering analysis were categorized by their profile features on the peak. The investigation of peak load shifting potentials was then conducted by quantifying peak load concerning their load profile types, which were indicated by the absolute peak power, the peak duration, and the sharpness of the peak. A numerical model was developed for a representative building, to determine peak shaving potentials. The model was calibrated and validated using the time-series measurements of two heating seasons. The heating load profiles of the buildings were classified into five types. The buildings with the hat shape peak type were in the majority during the winter and had the highest load shifting potential in the winter and transition season. The hat shape type’s peak load accounted for 10.7% of the total heating loads in winter, and the morning peak type accounted for 12.6% of total heating loads in the transition season. The case study simulation showed that the morning peak load was reduced by about 70%, by modulating the supply water temperature setpoints based on weather compensation curves. The methods and procedures used in this study can be applied in other cases, for the data analysis of a large number of buildings and the investigation of peak loads.


Author(s):  
Constantin Barbulescu ◽  
Stefan Kilyeni ◽  
Ovidiu Fati ◽  
Attila Simo ◽  
Georgeta Oprea ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
O. Alatise ◽  
A. Karlsson ◽  
A. Deb ◽  
R. Wu ◽  
J. Ortiz-Gonzalez

2013 ◽  
Vol 07 (02) ◽  
pp. 1350005 ◽  
Author(s):  
GIAN PAOLO CIMELLARO ◽  
ALESSANDRO DE STEFANO ◽  
OMAR VILLA

The concept of disaster resilience has received considerable attention in recent years and it is increasingly used as an approach for understanding the dynamics of natural disaster systems. No models are available in literature to measure the performance of natural gas network, therefore, in this paper, a new performance index measuring functionality of gas distribution network have been proposed to evaluate the resilience index of the entire network. It can be used for any type of natural or manmade hazard which might lead to the disruption of the system. The gas distribution network of the municipalities of Introdacqua and Sulmona, two small towns in the center of Italy which were affected by 2009 earthquake have been used as case study. Together the pipeline network covers an area of 136 km2, with 3 M/R stations and 16 regulation groups. The software SynerGEE has been used to simulate different scenario events. The numerical results showed that, during emergency, to ensure an acceptable delivery service, it is crucial to guarantee the functionality of the medium pressure gas distribution network. Instead to improve resilience of the entire network the best retrofit strategy is to include emergency shutoff valves along the pipes.


Sign in / Sign up

Export Citation Format

Share Document