Modeling Uncertainty of Day-ahead Market Prices for Energy Storage Aggregator

Author(s):  
Vishnu P. Menon ◽  
Yogesh Bichpuriya ◽  
Smita Lokhande ◽  
Venkatesh Sarangan
2021 ◽  
Vol 13 (11) ◽  
pp. 5848
Author(s):  
Isaías Gomes ◽  
Rui Melicio ◽  
Victor M. F. Mendes

This paper presents a computer application to assist in decisions about sustainability enhancement due to the effect of shifting demand from less favorable periods to periods that are more convenient for the operation of a microgrid. Specifically, assessing how the decisions affect the economic participation of the aggregating agent of the microgrid bidding in an electricity day-ahead market. The aggregating agent must manage microturbines, wind systems, photovoltaic systems, energy storage systems, and loads, facing load uncertainty and further uncertainties due to the use of renewable sources of energy and participation in the day-ahead market. These uncertainties cannot be removed from the decision making, and, therefore, require proper formulation, and the proposed approach customizes a stochastic programming problem for this operation. Case studies show that under these uncertainties and the shifting of demand to convenient periods, there are opportunities to make decisions that lead to significant enhancements of the expected profit. These enhancements are due to better bidding in the day-ahead market and shifting energy consumption in periods of favorable market prices for exporting energy. Through the case studies it is concluded that the proposed approach is useful for the operation of a microgrid.


Author(s):  
Allan E. Ingram

Electric energy storage has been discussed as an option for increasing the marketability of wind energy facilities by reducing output variation. Utility scale wind plants face economic exposure to tariff charges for output variation as well as depending on volatile market prices for success. Wind speed variability and associated changes in wind plant output raise specific challenges to design engineers sizing electric energy storage systems. Evaluation of prospective Wind/Storage applications depends on the characteristics of individual wind plant output and the choice of storage technology. Energy storage options range from traditional lead acid batteries and pumped hydro storage to recently commercialized electrochemical flow battery systems. Selection and sizing of energy storage for wind plants vary with the time frame for each application. Different time frames correspond with the utility definitions of regulation, load shaping and load factoring. Results from a storage system model are presented that differentiate appropriate storage system sizes for these applications.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1373
Author(s):  
Salah K. ElSayed ◽  
Sattam Al Otaibi ◽  
Yasser Ahmed ◽  
Essam Hendawi ◽  
Nagy I. Elkalashy ◽  
...  

Recently, micro-grids (MGs) have had a great impact on power system issues due to their clear environmental and economic advantages. This paper proposes an equilibrium optimizer (EO) technique for solving the energy management problem of MGs incorporating energy storage devices concerning the emissions from renewable energy sources (RES) of MGs. Because of the imprecision and uncertainties related to the RESs, market prices, and forecast load demand, the optimization problem is described in a probabilistic manner using a 2m + 1 point estimation approach. Then, the EO approach is utilized for solving the probabilistic energy management (EM) problem. The EM problem is described according to the market policy on the basis of minimizing the total operating cost and emission from RESs through optimal settings of the power generated from distributed generators (DGs) and grids connected under the condition of satisfying the operational constraints of the system. The proposed EO is evaluated based on a grid-connected MG that includes energy storage devices. Moreover, to prove the effectiveness of the EO, it is compared with other recently meta-heuristic techniques. The simulation results show acceptable robustness of the EO for solving the EM problem as compared to other techniques.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6803
Author(s):  
Ann-Kathrin Klaas ◽  
Hans-Peter Beck

Energy storage, both short- and long-term, will play a vital role in the energy system of the future. One storage technology that provides high power and capacity and that can be operated without carbon emissions is compressed air energy storage (CAES). However, it is widely assumed that CAES plants are not economically feasible. In this context, a mixed-integer linear programming (MILP) model of the Huntorf CAES plant was developed for revenue maximization when participating in the day-ahead market and the minute-reserve market in Germany. The plant model included various plant variations (increased power and storage capacity, recuperation) and a water electrolyzer to produce hydrogen to be used in the combustion chamber of the CAES plant. The MILP model was applied to four use cases that represent a market-orientated operation of the plant. The objective was the maximization of revenue with regard to price spreads and operating costs. To simulate forecast uncertainties of the market prices, a rolling horizon approach was implemented. The resulting revenues ranged between EUR 0.5 Mio and EUR 7 Mio per year and suggested that an economically sound operation of the storage plant is possible.


2019 ◽  
Vol 28 (4) ◽  
pp. 570-582 ◽  
Author(s):  
I L R GOMES ◽  
R MELICIO ◽  
V M F MENDES ◽  
H M I POUSINHO

Abstract This paper is about a support information management system for a wind power (WP) producer having an energy storage system (ESS) and participating in a day-ahead electricity market. Energy storage can play not only a leading role in mitigation of the effect of uncertainty faced by a WP producer, but also allow for conversion of wind energy into electric energy to be stored and then released at favourable hours. This storage provides capability for arbitrage, allowing an increase on profit of a WP producer, but must be supported by a convenient problem formulation. The formulation proposed for the support information management system is based on an approach of stochasticity written as a mixed integer linear programming problem. WP and market prices are considered as stochastic processes represented by a set of scenarios. The charging/discharging of the ESS are considered dependent on scenarios of market prices and on scenarios of WP. The effectiveness of the proposed formulation is tested by comparison of case studies using data from the Iberian Electricity Market. The comparison is in favour of the proposed consideration of stochasticity.


2020 ◽  
Vol 13 (5) ◽  
pp. 1429-1461 ◽  
Author(s):  
Xiaona Li ◽  
Jianwen Liang ◽  
Xiaofei Yang ◽  
Keegan R. Adair ◽  
Changhong Wang ◽  
...  

This review focuses on fundamental understanding, various synthesis routes, chemical/electrochemical stability of halide-based lithium superionic conductors, and their potential applications in energy storage as well as related challenges.


2020 ◽  
Vol 13 (10) ◽  
pp. 3527-3535 ◽  
Author(s):  
Nana Chang ◽  
Tianyu Li ◽  
Rui Li ◽  
Shengnan Wang ◽  
Yanbin Yin ◽  
...  

A frigostable aqueous hybrid electrolyte enabled by the solvation interaction of Zn2+–EG is proposed for low-temperature zinc-based energy storage devices.


Author(s):  
Peng Wang ◽  
Zhongbin Pan ◽  
Weilin Wang ◽  
Jianxu Hu ◽  
Jinjun Liu ◽  
...  

High-performance electrostatic capacitors are in urgent demand owing to the rapidly development of advanced power electronic applications. However, polymer-based composite films with both high breakdown strength (Eb) and dielectric constant...


Sign in / Sign up

Export Citation Format

Share Document