Hardware in the Loop (HIL) test bench for small-scale Distributed Generation systems

Author(s):  
Marco Mauri ◽  
Francesco Castelli Dezza ◽  
Gabriele Marchegiani
Author(s):  
Richard L. Hack ◽  
Max R. Venaas ◽  
Vince G. McDonell ◽  
Tod M. Kaneko

Small scale Distributed Generation with waste heat recovery (<50 kW power output, micro-DG/CHP) is an expanding market supporting the widespread deployment of on-site generation to much larger numbers of facilities. The benefits of increased overall thermal efficiency, reduced pollutant emissions, and grid/microgrid support provided by DG/CHP can be maximized with greater quantities of smaller systems that better match the electric and thermal on-site loads. The 3-year CEC funded program to develop a natural gas fueled automotive based rotary engine for micro-DG/CHP, capitalizing upon the unique attributes engine configuration will be presented including initial performance results and plans for the balance of the program.


Author(s):  
Vanka Bala Murali Krishna ◽  
Sandeep Vuddanti

Abstract Research on Self –excited induction generator (SEIG) brings a lot of attentions in the last three decades as a promising solution in distributed generation systems with low cost investment. There are two important fixations to attend in the operation of SEIG based systems, a) excitation and b) voltage regulation. Many procedures are reported regarding selection of excitation capacitance in the literature, based on state-state analysis, dynamic modeling, empirical formulas and machine parameters which involve various levels of complexity in findings. Moreover, the voltage regulation is the main challenge in implementation of SEIG based isolated systems. To address this problem, many power electronic-based schemes are proposed in the literature and but these solutions have few demerits importantly that additional cost of equipment and troubles due to failure of protection schemes. In particular, the installation of SEIG takes place at small scale in kW range in remote/rural communities which should not face such shortcomings. Further in case of off-grid systems, the maximum loading is fixed based on connected rating of the generator. This paper presents the various methods to find excitation capacitance and illustrates an experimental investigation on different possible reactive power compensation methods of delta connected SEIG and aimed to identify a simple method for terminal voltage control without power electronics. In this experimental work, the prime-mover of the generator is a constant speed turbine, which is the emulation of a micro/pico hydro turbine. From the results, it is found that a simple delta connected excitation and delta configured reactive power compensation limits voltage regulation within ±6% while maintaining the frequency of ±1%, which make feasible of the operation successfully in remote electrification systems.


2015 ◽  
Vol 14 (2) ◽  
pp. 27
Author(s):  
I Made Gusmara Nusaman ◽  
I Wayan Sukerayasa ◽  
Rukmi Sari Hartati

The distributed generation technology or in this case abbreviated DG is a kind of power plants with small scale which prioritizes the utilization of renewable energy resources such as wind, water, solar, geothermal, ocean waves (Wave Energy), ocean currents (Ocean Current Energy), biomass, and biogass to produce the electrical energy with range of power generation between 1 kW-10 MW. One of the DG in Bali and still in operation is the garbage power plant which located in Suwung, South Denpasar. An analysis has been done using load flow analysis and reliability assessment to determine the effect of DG interconnection against the power losses and the level of reliability on the Serangan feeder. Based on the research that has been done, DG intercon-nection on the Serangan feeder decrease the power losses and increase the reliability and it can visible from the acquisition of SAIFI and SAIDI index which decreased. The best location of DG interconnection to get low of the power losses and the high level of reliability is at 97% from the total length of the feeder. At that location the power losses is decrease as big as 4.5 kW or 11.25% of the total power lossess without the DG interconnection and decrease of the SAIFI and SAIDI index respectively to 0.1 failure/customers/year and 1.4150 hour/ customer/year


Sign in / Sign up

Export Citation Format

Share Document