A comparison study for force sensor and reaction force observer based robust force control systems

Author(s):  
Emre Sariyildiz ◽  
Kouhei Ohnishi
Author(s):  
Ahmet Kuzu ◽  
Eray A. Baran ◽  
Seta Bogosyan ◽  
Metin Gokasan ◽  
Asif Sabanovic

This article presents a novel master-slave control configuration that is experimentally demonstrated to improve teleoperation performance under random network delay. This is achieved via the design of a proactive haptic sensing system based on a laser range sensor on the slave side, which in turn allows for the proactive transmission of force control from the master to the slave, thus compensating for Internet-based network delays. The proposed configuration introduces three main contributions to the literature of bilateral control systems: (1) fully decoupled position and force control systems, which allow for the controller gains of each loop to be tuned independently, eliminating the trade-off common to most previous literature; (2) a novel approach that exploits the slow variation nature of the environment parameters, resulting in a lower bandwidth requirement in comparison to previous force control methods; (3) capability to measure the slave environment location and the prediction of the contact force as a result, which provides the human operator with the capability to generate the reaction force proactively on the master side. The conducted experiments demonstrated a significantly improved performance in terms of synchronized forces and positions despite the random network delay between the master and slave systems.


2009 ◽  
Vol 147-149 ◽  
pp. 1-6 ◽  
Author(s):  
Rafal Osypiuk ◽  
Torsten Kröger

This contribution presents a new force control concept for industrial six-degree of freedom (DOF) manipulators, which uses a Hexa platform that provides an active environmental stiffness for all six DOFs. The paper focuses on the Hexa platform and is split into two essential parts: (i) parallel platform construction, and (ii) application of force control with industrial manipulators using a six-DOF environmental stiffness. This mechatronic solution almost gives one hundred percent robustness for stiffness changes in the environment, what guaranties a significant shortening of execution time.


Author(s):  
Ali A. Abbasi ◽  
M. T. Ahmadian

Nano-micro grippers are able to pick-transport-place the micro or nanometer–sized materials, such as manipulation of biological cells or DNA molecules in a liquid medium. This paper proposes a novel monolithic nano-micro gripper structure with two axis piezoresistive force sensor which its resolution is under nanoNewton. The results of the study have been obtained by the simulation of the proposed gripper structure in Matlab software. Motion of the gripper arm is produced by a voice coil actuator. The behavior of the cell has been derived using the assumptions in the literatures. Moreover, two simple PID controllers, one for control of the gripper motion and another for control of the force during manipulation of a biologic cell, have been implemented. Although the proposed gripper has not been fabricated, since the geometrical dimensions of the proposed gripper is the same as previously developed electrothermally actuated micro-nano gripper, the results of force control have been also compared with it. The simulated results with the very simple PID force controller which has a more rapid response than previously developed electrothermally actuated micro-nano gripper show that the designed gripper has the potential to be considered and fabricated for manipulation of biological cells in the future.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1635 ◽  
Author(s):  
Tie Zhang ◽  
Ye Yu ◽  
Yanbiao Zou

To improve the processing quality and efficiency of robotic belt grinding, an adaptive sliding-mode iterative constant-force control method for a 6-DOF robotic belt grinding platform is proposed based on a one-dimension force sensor. In the investigation, first, the relationship between the normal and the tangential forces of the grinding contact force is revealed, and a simplified grinding force mapping relationship is presented for the application to one-dimension force sensors. Next, the relationship between the deformation and the grinding depth during the grinding is discussed, and a deformation-based dynamic model describing robotic belt grinding is established. Then, aiming at an application scene of robot belt grinding, an adaptive iterative learning method is put forward, which is combined with sliding mode control to overcome the uncertainty of the grinding force and improve the stability of the control system. Finally, some experiments were carried out and the results show that, after ten times iterations, the grinding force fluctuation becomes less than 2N, the mean value, standard deviation and variance of the grinding force error’s absolute value all significantly decrease, and that the surface quality of the machined parts significantly improves. All these demonstrate that the proposed force control method is effective and that the proposed algorithm is fast in convergence and strong in adaptability.


Sign in / Sign up

Export Citation Format

Share Document