Stability enhancement of power system by controlling HVDC power flow through the same AC transmission line

Author(s):  
K. P. Basu
2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Shereefdeen Oladapo Sanni ◽  
Josiah Haruna ◽  
Boyi Jimoh ◽  
Usman Aliyu

This study presents the transient stability enhancement capability of Unified power flow controller (UPFC) as an effective Flexible AC Transmission System (FACTS) device in a multi-machine power system. The test system was a reduced Nigerian 330kV power system and the focus was on the effect of disturbances on the largest generating unit (Egbin) in the system. The analysis was conducted by simulating a 3-phase fault at two locations; on the terminal of the largest generator unit at Egbin bus and the bus with the largest load at Ikeja–west. The response of the system in both cases was compared with and without the device in operation. Simulations were carried out using the Power System Simulation for Engineering (PSS/E) software. Results showed that, with the UPFC in the network, system transient stability was enhanced considering that critical clearing time of the system was increased from 380ms to 590ms when the fault was at Egbin generator terminal and from 470ms to 510ms following the fault at Ikeja-west. In addition, the device was able to damp power oscillations resulting from the disturbance created by the faults.


2012 ◽  
Vol 433-440 ◽  
pp. 7208-7212
Author(s):  
Ya Min Su Hlaing ◽  
Ze Ya Aung

This thesis implements power flow application, Newton-Raphson method. The Newton-Raphson method is mainly employed in the solution of power flow problems. The network of Myanma electric power system is used as the reference case. The system network contains 90 buses and 106 brunches. The weak points are found in the network by using Newton-Raphson method. Bus 16, 17, 85 and 86 have the most weak bus voltages. The medium transmission line between bus 87 and bus 17 is compensated by using MATLAB program software. The transmission line is compensated with shunt reactors, series and shunt capacitors to improve transient and steady-state stability, more economical loading, and minimum voltage dip on load buses and to supply the requisite reactive power to maintain the receiving end voltage at a satisfactory level. The system performance is tested under steady-state condition. This paper investigates and improves the steady–state operation of Myanma Power System Network.


2011 ◽  
Vol 403-408 ◽  
pp. 4926-4933
Author(s):  
Laxmidhar Sahu ◽  
Jose. P. Therattil ◽  
P. C. Panda

The continuous change in power demand and supply altered the power flow patterns in transmission networks in such a way that some of the corridors are lightly loaded and some of the corridors get over loaded. This raises serious challenge in operating the power system in secure and reliable manner. To cope with this problem Flexible AC Transmission Systems (FACTS) is used. It plays a very important role in improving the power system operating performance. In this paper load flow models for STATCOM and SVC have been developed. Power flow study of a five bus system is carried out with and without FACTS controllers. Results of the power flow studies are obtained with MATLAB programming.


Author(s):  
Isaiah Adebayo ◽  
Adisa Jimoh ◽  
Adedayo Yusuff

AbstractThis paper proposes two techniques for the identification of critical buses in a power system. The technique of Network Structural Theory Participation Factor (NSTPF) depends on the network structural interconnection of buses as captured by the admittance matrix of the system and is formulated based on the fundamental circuit theory law using eigenvalue decomposition method. Another power flow based technique which depends on the system maximum loadability, the system step size among other factors is also proposed. Traditional power flow based techniques are used as benchmarks to determine the significance of the proposed methods. To ensure voltage stability enhancement, STATCOM FACTS device is installed at the selected weak load buses of the practical Nigerian 24 bus and IEEE 30 bus test systems. The results of the simulation obtained show that, the suggested approach of NSTPF is more suitable in the identification of weak buses that are liable to voltage instability in power systems as it requires less computational burden and also saves time compared to techniques based on power flow solutions.


2020 ◽  
Vol 40 (3) ◽  
pp. 21-31
Author(s):  
Mohamed Nassim Kraimia ◽  
Mohamed Boudour

In this paper a study of the impact of the harmonics generated by a static Var compensator (SVC) is presented. The SVC is modeled, in the harmonic domain, as a coupled current source by using the complex Fourier transforms. Then, this model is converted to polar form to be integrated into the harmonic power flow program. This approach has been carried out on the IEEE 14 bus test power system, in order to show its effectiveness in evaluating the impact of harmonics, injected by the shunt compensating devices, and its interaction with the AC transmission system, in meshed power networks. Since the SVC consists of a thyristorcontrolled reactor (TCR) and a fixed capacitor, the harmonic currents are functions of the TCR thyristors firing angles. The variation of the total voltage harmonic distortion as function of firing angle changes and location of nonlinear loads is clearly presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document