Numerical Simulation of Long-Distance Diversion Tunnel with Free Flow Based on the VOF Method

Author(s):  
Xinfeng Wang ◽  
Xiaoling Wang ◽  
Chenchen Wang ◽  
Juan An ◽  
Ziqiang Zhang ◽  
...  
2014 ◽  
Vol 548-549 ◽  
pp. 1257-1264 ◽  
Author(s):  
Xiao Yong Suo

Taking ejection process of the ink droplets from ink-jet nozzle as the prototype, a similar numerical model of droplet ejection was established. The VOF method was applied to track the interface of droplet ejection process and it is shown that the numerical results simulated by the VOF method were accurate and reliable. Six kinds of liquid with different physical properties were chosen as the research object. The numerical results were analyzed and compared. Finally, the effect of the surface tension, viscosity and density on the droplet ejection process was discussed.


2012 ◽  
Vol 256-259 ◽  
pp. 2569-2572
Author(s):  
Zhan Ying Wu ◽  
Zhen Wei Mu

The unsteady flow RNG k ~ ε turbulence model and VOF Method are employed to numerically simulate 3-D flow field of diversion tunnel outlet stilling pool in Xinjiang dina river wuyi reservoir. The computational and experimental water surface elevation, pressure on the bottom and cross-sectional mean velocity of the suspended grid stilling pool are compared in well agreement. Suspended grid is used in stilling pool, the number of vortex and range are increased in the pool, and the size of the vortex is decreased along with the flow increase. The suspended grid position is determined at end of the vortex. In the suspended grid stilling pool water stability, flow regime is good.


2014 ◽  
Vol 1030-1032 ◽  
pp. 661-664
Author(s):  
Zhe Zuo

The risk of natural gas long-distance pipeline and main factors of accidents are analyzed in this paper. According the consequences from above, quantitative risk assessment of long-distance pipelines under specific accident scenarios are completed with the help of numerical simulation model on long-distance pipeline leakage and dispersion. What’s more, on the basis of the assessment results, the necessary conditions for long-distance pipeline safe operation are presented. Finally, conclusions and safe operations under necessary conditions given in this paper are helpful for regular operation of pipeline, accident prevention, emergency response and reasonable supervision.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Cunfang Zhu ◽  
Shuang Cai

How to quickly eliminate outburst in long-distance through-coal seam tunnels is one of the major challenges faced by the tunnel industry in mountainous areas. Compared with coal mine rock crosscut coal uncovering, the work surrounding the rock of through-coal seam tunnels has a high degree of breakage, large cross-section of coal uncovering, and tight time and space. In this paper, a method of networked slotting in long-distance through-coal seam tunnels for rapid pressure relief and outburst elimination is proposed. Based on this method, the corresponding mathematical governing equations and numerical simulation models have been established. The optimal borehole arrangement spacing and the slot arrangement spacing obtained by numerical optimization are 2.85 m and 3.1 m, respectively. Field gas production data of through-coal seam tunnels show that compared with the traditional dense-borehole gas extraction, the method of networked slotting in long-distance through-coal seam tunnels for rapid pressure relief and outburst elimination can shorten the extraction time by about 66%, the net quantity of peak extraction is increased by 3.55 times, and the total quantity of gas extraction when reaching the outburst prevention index is increased by 1.26 times, which verifies the feasibility of this method and the reliability of numerical simulation results. This study could be used as a valuable example for other coal deposits being mined under similar geological conditions.


Sign in / Sign up

Export Citation Format

Share Document