NoMark: A Novel Method for Copyright Protection of Digital Videos without Embedding Data

Author(s):  
Aditya Vashistha ◽  
Rajarathnam Nallusamy ◽  
Sanjoy Paul
2018 ◽  
Vol 7 (2.9) ◽  
pp. 90
Author(s):  
Jabir Ali ◽  
Satya Prakash Ghrera

Digital copyright protection has become an effective way to prove the ownership and protect the multimedia contents from illegal use and unauthorized users. In order to prove the ownership of a video certain security program is embedded in a video and one of the ways of ensuring the ownership of a video is embedding the watermark in a video. In this paper, a new approach to digital video copyright protection, SWEA (Split watermark embedding algorithm) with Zero Padding Algorithm (ZPA) is proposed. With the help of this algorithm, it is hard to know the original pattern of watermark because of SWEA and minimizing the perceptual degradation of watermarked video because of ZPA. Here we are using ‘db1’ wavelet domain for embedding the watermark in the LL sub-band of the original identical frame (I-frame), based on the energy of high-frequency sub-band in an adaptive manner. SCD (Scene changed detection) is used to find out the identical frame (I-frame). The proposed algorithm has undergone various attacks, such as compression, uniform noise, Gaussian noise frame repetition and frame averaging attacks. The proposed algorithm, sustain all the above attacks and offers improved performance compared with the other methods from the literature.


Author(s):  
L. Velazquez-Garcia ◽  
A. Cedillo-Hernandez ◽  
M. Cedillo-Hernandez ◽  
M. Nakano-Miyatake ◽  
H. Perez-Meana

2018 ◽  
Vol 8 (10) ◽  
pp. 1891 ◽  
Author(s):  
Xiaoyan Yu ◽  
Chengyou Wang ◽  
Xiao Zhou

With the development and popularization of the Internet and the rise of various live broadcast platforms, digital videos have penetrated into all aspects of people’s life. At the same time, all kinds of pirated videos are also flooding the Internet, which seriously infringe the rights and interests of video copyright owners and hinder the healthy development of the video industry. Therefore, robust video watermarking algorithms for copyright protection have emerged as these times require. In this paper, we review robust video watermarking algorithms for copyright protection based on original videos and compressed videos. Basic models and properties of video watermarking algorithms are described, and the evaluation indexes corresponding to each property are also introduced. To help researchers understand various existing robust watermarking algorithms quickly, some basic information and the quantitative estimation of several performances are analyzed and compared. Finally, we discuss the challenges in the research of robust video watermarking algorithms, and give possible development directions for the future.


Author(s):  
M.A. Gregory ◽  
G.P. Hadley

The insertion of implanted venous access systems for children undergoing prolonged courses of chemotherapy has become a common procedure in pediatric surgical oncology. While not permanently implanted, the devices are expected to remain functional until cure of the primary disease is assured. Despite careful patient selection and standardised insertion and access techniques, some devices fail. The most commonly encountered problems are colonisation of the device with bacteria and catheter occlusion. Both of these difficulties relate to the development of a biofilm within the port and catheter. The morphology and evolution of biofilms in indwelling vascular catheters is the subject of ongoing investigation. To date, however, such investigations have been confined to the examination of fragments of biofilm scraped or sonicated from sections of catheter. This report describes a novel method for the extraction of intact biofilms from indwelling catheters.15 children with Wilm’s tumour and who had received venous implants were studied. Catheters were removed because of infection (n=6) or electively at the end of chemotherapy.


GeroPsych ◽  
2012 ◽  
Vol 25 (4) ◽  
pp. 235-245 ◽  
Author(s):  
Katja Franke ◽  
Christian Gaser

We recently proposed a novel method that aggregates the multidimensional aging pattern across the brain to a single value. This method proved to provide stable and reliable estimates of brain aging – even across different scanners. While investigating longitudinal changes in BrainAGE in about 400 elderly subjects, we discovered that patients with Alzheimer’s disease and subjects who had converted to AD within 3 years showed accelerated brain atrophy by +6 years at baseline. An additional increase in BrainAGE accumulated to a score of about +9 years during follow-up. Accelerated brain aging was related to prospective cognitive decline and disease severity. In conclusion, the BrainAGE framework indicates discrepancies in brain aging and could thus serve as an indicator for cognitive functioning in the future.


Sign in / Sign up

Export Citation Format

Share Document