A Scoring Model of Figural Goodness and Its Application to Contour Completion Problems

Author(s):  
Takahiro Hayashi ◽  
Koji Abe
2020 ◽  
Author(s):  
Yunfeng Liu ◽  
Simei Qiu ◽  
Dongshan Sun ◽  
Shan Li ◽  
Qiuling Xiang ◽  
...  

2015 ◽  
Vol 143 (11-12) ◽  
pp. 681-687 ◽  
Author(s):  
Tomislav Pejovic ◽  
Miroslav Stojadinovic

Introduction. Accurate precholecystectomy detection of concurrent asymptomatic common bile duct stones (CBDS) is key in the clinical decision-making process. The standard preoperative methods used to diagnose these patients are often not accurate enough. Objective. The aim of the study was to develop a scoring model that would predict CBDS before open cholecystectomy. Methods. We retrospectively collected preoperative (demographic, biochemical, ultrasonographic) and intraoperative (intraoperative cholangiography) data for 313 patients at the department of General Surgery at Gornji Milanovac from 2004 to 2007. The patients were divided into a derivation (213) and a validation set (100). Univariate and multivariate regression analysis was used to determine independent predictors of CBDS. These predictors were used to develop scoring model. Various measures for the assessment of risk prediction models were determined, such as predictive ability, accuracy, the area under the receiver operating characteristic curve (AUC), calibration and clinical utility using decision curve analysis. Results. In a univariate analysis, seven risk factors displayed significant correlation with CBDS. Total bilirubin, alkaline phosphatase and bile duct dilation were identified as independent predictors of choledocholithiasis. The resultant total possible score in the derivation set ranged from 7.6 to 27.9. Scoring model shows good discriminatory ability in the derivation and validation set (AUC 94.3 and 89.9%, respectively), excellent accuracy (95.5%), satisfactory calibration in the derivation set, similar Brier scores and clinical utility in decision curve analysis. Conclusion. Developed scoring model might successfully estimate the presence of choledocholithiasis in patients planned for elective open cholecystectomy.


Author(s):  
Qing Zhang ◽  
Hao-Yang Gao ◽  
Ding Li ◽  
Chang-Sen Bai ◽  
Zheng Li ◽  
...  

Abstract Background Few mortality-scoring models are available for solid tumor patients who are predisposed to develop Escherichia coli–caused bloodstream infection (ECBSI). We aimed to develop a mortality-scoring model by using information from blood culture time to positivity (TTP) and other clinical variables. Methods A cohort of solid tumor patients who were admitted to hospital with ECBSI and received empirical antimicrobial therapy was enrolled. Survivors and non-survivors were compared to identify the risk factors of in-hospital mortality. Univariable and multivariable regression analyses were adopted to identify the mortality-associated predictors. Risk scores were assigned by weighting the regression coefficients with corresponding natural logarithm of the odds ratio for each predictor. Results Solid tumor patients with ECBSI were distributed in the development and validation groups, respectively. Six mortality-associated predictors were identified and included in the scoring model: acute respiratory distress (ARDS), TTP ≤ 8 h, inappropriate antibiotic therapy, blood transfusion, fever ≥ 39 °C, and metastasis. Prognostic scores were categorized into three groups that predicted mortality: low risk (< 10% mortality, 0–1 points), medium risk (10–20% mortality, 2 points), and high risk (> 20% mortality, ≥ 3 points). The TTP-incorporated scoring model showed excellent discrimination and calibration for both groups, with AUC being 0.833 vs 0.844, respectively, and no significant difference in the Hosmer–Lemeshow test (6.709, P = 0.48) and the chi-square test (6.993, P = 0.46). Youden index showed the best cutoff value of ≥ 3 with 76.11% sensitivity and 79.29% specificity. TTP-incorporated scoring model had higher AUC than no TTP-incorporated model (0.837 vs 0.817, P < 0.01). Conclusions Our TTP-incorporated scoring model was associated with improving capability in predicting ECBSI-related mortality. It can be a practical tool for clinicians to identify and manage bacteremic solid tumor patients with high risk of mortality.


2020 ◽  
pp. 1-11
Author(s):  
Tang Yan ◽  
Li Pengfei

In marketing, problems such as the increase in customer data, the increase in the difficulty of data extraction and access, the lack of reliability and accuracy of data analysis, the slow efficiency of data processing, and the inability to effectively transform massive amounts of data into valuable information have become increasingly prominent. In order to study the effect of customer response, based on machine learning algorithms, this paper constructs a marketing customer response scoring model based on machine learning data analysis. In the context of supplier customer relationship management, this article analyzes the supplier’s precision marketing status and existing problems and uses its own development and management characteristics to improve marketing strategies. Moreover, this article uses a combination of database and statistical modeling and analysis to try to establish a customer response scoring model suitable for supplier precision marketing. In addition, this article conducts research and analysis with examples. From the research results, it can be seen that the performance of the model constructed in this article is good.


Sign in / Sign up

Export Citation Format

Share Document