Acoustic Flame Suppression in Various Gravitational Forces

Author(s):  
Joshua Rodriguez ◽  
Riki Barron ◽  
Juan Giraldo ◽  
Osvaldo Salinas ◽  
Justin Tarwater
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Charlotte Richter ◽  
Bjoern Braunstein ◽  
Benjamin Staeudle ◽  
Julia Attias ◽  
Alexander Suess ◽  
...  

AbstractVigorous exercise countermeasures in microgravity can largely attenuate muscular degeneration, albeit the extent of applied loading is key for the extent of muscle wasting. Running on the International Space Station is usually performed with maximum loads of 70% body weight (0.7 g). However, it has not been investigated how the reduced musculoskeletal loading affects muscle and series elastic element dynamics, and thereby force and power generation. Therefore, this study examined the effects of running on the vertical treadmill facility, a ground-based analog, at simulated 0.7 g on gastrocnemius medialis contractile behavior. The results reveal that fascicle−series elastic element behavior differs between simulated hypogravity and 1 g running. Whilst shorter peak series elastic element lengths at simulated 0.7 g appear to be the result of lower muscular and gravitational forces acting on it, increased fascicle lengths and decreased velocities could not be anticipated, but may inform the development of optimized running training in hypogravity. However, whether the alterations in contractile behavior precipitate musculoskeletal degeneration warrants further study.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Adrian David ◽  
Yasha Neiman

Abstract We consider higher-spin gravity in (Euclidean) AdS4, dual to a free vector model on the 3d boundary. In the bulk theory, we study the linearized version of the Didenko-Vasiliev black hole solution: a particle that couples to the gauge fields of all spins through a BPS-like pattern of charges. We study the interaction between two such particles at leading order. The sum over spins cancels the UV divergences that occur when the two particles are brought close together, for (almost) any value of the relative velocity. This is a higher-spin enhancement of supergravity’s famous feature, the cancellation of the electric and gravitational forces between two BPS particles at rest. In the holographic context, we point out that these “Didenko-Vasiliev particles” are just the bulk duals of bilocal operators in the boundary theory. For this identification, we use the Penrose transform between bulk fields and twistor functions, together with its holographic dual that relates twistor functions to boundary sources. In the resulting picture, the interaction between two Didenko-Vasiliev particles is just a geodesic Witten diagram that calculates the correlator of two boundary bilocals. We speculate on implications for a possible reformulation of the bulk theory, and for its non-locality issues.


2017 ◽  
Vol 114 (37) ◽  
pp. 9820-9825 ◽  
Author(s):  
George A. Thompson ◽  
Tom Parsons

In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (∼100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period.


2006 ◽  
Vol 2 (S240) ◽  
pp. 442-452 ◽  
Author(s):  
Katalin Oláh

AbstractActivity of late type stars is enhanced by fast rotation, which is maintained in nearly synchronized close binary systems. Magnetic activity originates in the deep convection zones of stars from where magnetic flux tubes emerge to their surfaces. The gravitational forces in binaries help the clustering of activity features giving rise to active longitudes. These preferred longitudes are observed in binaries from dwarfs to giants. Differential rotation is found in many active stars that are components of binary systems. If these binaries are circularized and nearly synchronized, then there will be a corotation latitude in their surfaces, and its position can be determined by observations and by theoretical calculations. Enhanced activity in binaries could have a reverse effect as well: strong magnetism in a binary component can modify the orbital period by the cyclic exchange of kinetic and magnetic energy in its convective envelope.


1992 ◽  
Vol 116 (5) ◽  
pp. 1123-1134 ◽  
Author(s):  
M L Cano ◽  
L Cassimeris ◽  
M Fechheimer ◽  
S H Zigmond

While actin polymerization and depolymerization are both essential for cell movement, few studies have focused on actin depolymerization. In vivo, depolymerization can occur exceedingly rapidly and in a spatially defined manner: the F-actin in the lamellipodia depolymerizes in 30 s after chemoattractant removal (Cassimeris, L., H. McNeill, and S. H. Zigmond. 1990. J. Cell Biol. 110:1067-1075). To begin to understand the regulation of F-actin depolymerization, we have examined F-actin depolymerization in lysates of polymorphonuclear leukocytes (PMNs). Surprisingly, much of the cell F-actin, measured with a TRITC-phalloidin-binding assay, was stable after lysis in a physiological salt buffer (0.15 M KCl): approximately 50% of the F-actin did not depolymerize even after 18 h. This stable F-actin included lamellar F-actin which could still be visualized one hour after lysis by staining with TRITC-phalloidin and by EM. We investigated the basis for this stability. In lysates with cell concentrations greater than 10(7) cells/ml, sufficient globular actin (G-actin) was present to result in a net increase in F-actin. However, the F-actin stability was not solely because of the presence of free G-actin since addition of DNase I to the lysate did not increase the F-actin loss. Nor did it appear to be because of barbed end capping factors since cell lysates provided sites for barbed end polymerization of exogenous added actin. The stable F-actin existed in a macromolecular complex that pelleted at low gravitational forces. Increasing the salt concentration of the lysis buffer decreased the amount of F-actin that pelleted at low gravitational forces and increased the amount of F-actin that depolymerized. Various actin-binding and cross-linking proteins such as tropomyosin, alpha-actinin, and actin-binding protein pelleted with the stable F-actin. In addition, we found that alpha-actinin, a filament cross-linking protein, inhibited the rate of pyrenyl F-actin depolymerization. These results suggested that actin cross-linking proteins may contribute to the stability of cellular actin after lysis. The activity of crosslinkers may be regulated in vivo to allow rapid turnover of lamellipodia F-actin.


Author(s):  
Bin Zheng ◽  
Hae Chang Gea

In this paper, topology optimization problems with two types of body force are considered: gravitational force and centrifugal force. For structural design under both external and gravitational forces, a total mean compliance formulation is used to produce the stiffest structure. For rotational structural design with high angular velocity, one additional design criteria, kinetic energy, is included in the formulation. Sensitivity analyses of the total mean compliance and kinetic energy are derived. Finally, design examples are presented and compared to show the effects of body forces on the optimized results.


2010 ◽  
Vol 20 (2) ◽  
pp. 157-178 ◽  
Author(s):  
Andrew P. Roddick ◽  
Christine A. Hastorf

Based on more than a decade of research on the Taraco Peninsula, Titicaca Basin, Bolivia, we discuss the role of memory, tradition and ancestral participation from the earliest settled communities to the founding and influence of the Tiwanaku order. We examine the shifting role of social memory vis-à-vis public ceremonies, pottery and food production. While the earlier phases give a sense of familial community and the construction of place through ancestor veneration, the later phases suggest stronger lineage commemoration, with families acting as gravitational forces in the burgeoning political developments. Our diachronic study on the Taraco Peninsula tracks these practices illustrating the movement along a discursive–non-discursive continuum, with some practices brought to the surface and politicized.


Sign in / Sign up

Export Citation Format

Share Document