GHz-range continuous-time programmable digital FIR with power dissipation that automatically adapts to signal activity

Author(s):  
Mariya Kurchuk ◽  
Colin Weltin-Wu ◽  
Dominique Morche ◽  
Yannis Tsividis

Practically all electronic systems are realized using integrated circuit(IC) chips. The IC design requires digital signals, but however the physical signals available routinely are either continuous time varying signals or corrupted discrete voltages. These continuous time varying input signals are converted to full voltage swing digital signals by means of a comparator circuit. The comparators use regenerative feedback to transform the output to a full scale digital signal. The core specifications considered in this comparator implementation are power dissipation (PD), propagation delay (tP), output offset voltage and slew rate. The circuit is simulated in CMOS 180nm technology using Tanner EDA tool. The high speed latched comparator circuit is powered with a 1.8V DC power supply and the obtained results show that it operates at 1.67GHz, slew rate is 126 V/µS and the dynamic power dissipation is found to be 0.328mW.


2007 ◽  
Vol 44 (02) ◽  
pp. 285-294 ◽  
Author(s):  
Qihe Tang

We study the tail behavior of discounted aggregate claims in a continuous-time renewal model. For the case of Pareto-type claims, we establish a tail asymptotic formula, which holds uniformly in time.


2018 ◽  
Vol 23 (4) ◽  
pp. 774-799 ◽  
Author(s):  
Charles C. Driver ◽  
Manuel C. Voelkle

Sign in / Sign up

Export Citation Format

Share Document