Trading off Prediction Accuracy and Power Consumption for Context-Aware Wearable Computing

Author(s):  
A. Krause ◽  
M. Ihmig ◽  
E. Rankin ◽  
D. Leong ◽  
S. Gupta ◽  
...  
2011 ◽  
Vol 20 (07) ◽  
pp. 1211-1230 ◽  
Author(s):  
HYUN SANG CHO ◽  
TAKEKAZU KATO ◽  
TATSUYA YAMAZAKI ◽  
MINSOO HAHN

The home network is one of the emerging areas from the last century. However, the growth of the home network market is stationary at present. This paper describes the limitations of the home network system and the requirements for overcoming the current limitations. Also described is a new home network service system known as COWS and its easy installation and scalable operation. COWS consists of power consumption monitor and control devices along with a service server that is a complementary combination of Open Service Gateway initiative (OSGi) and web services. A home network system has a dynamic, heterogeneous, distributed, and scalable topology. Service Oriented Architecture (SOA) has been proposed as a solution that satisfies the requirement of a home network, and OSGi and web services are two successful SOA-based frameworks. An included service server has a flexible architecture that consists of a core and extendable service packages. A power consumption monitor and control function provides useful context information for activity-based context-aware services and optimizes the power consumption. The system can be installed easily into existing and new houses to solve the current barrier of the popularization of home network services.


2013 ◽  
Vol 24 (6) ◽  
pp. 615-632 ◽  
Author(s):  
Bjoern Dusza ◽  
Christoph Ide ◽  
Liang Cheng ◽  
Christian Wietfeld

Author(s):  
Pierre Kirisci ◽  
Ernesto Morales Kluge ◽  
Emanuel Angelescu ◽  
Klaus-Dieter Thoben

During the last two decades a lot of methodology research has been conducted for the design of software user interfaces (Kirisci, Thoben 2009). Despite the numerous contributions in this area, comparatively few efforts have been dedicated to the advancement of methods for the design of context-aware mobile platforms, such as wearable computing systems. This chapter investigates the role of context, particularly in future industrial environments, and elaborates how context can be incorporated in a design method in order to support the design process of wearable computing systems. The chapter is initiated by an overview of basic research in the area of context-aware mobile computing. The aim is to identify the main context elements which have an impact upon the technical properties of a wearable computing system. Therefore, we describe a systematic and quantitative study of the advantages of context recognition, specifically task tracking, for a wearable maintenance assistance system. Based upon the experiences from this study, a context reference model is proposed, which can be considered supportive for the design of wearable computing systems in industrial settings, thus goes beyond existing context models, e.g. for context-aware mobile computing. The final part of this chapter discusses the benefits of applying model-based approaches during the early design stages of wearable computing systems. Existing design methods in the area of wearable computing are critically examined and their shortcomings highlighted. Based upon the context reference model, a design approach is proposed through the realization of a model-driven software tool which supports the design process of a wearable computing system while taking advantage of concise experience manifested in a well-defined context model.


Author(s):  
Claas Ahlrichs ◽  
Hendrik Iben ◽  
Michael Lawo

In this chapter, recent research on context-aware mobile and wearable computing is described. Starting from the observation of recent developments on Smartphones and research done in wearable computing, the focus is on possibilities to unobtrusively support the use of mobile and wearable devices. There is the observation that size and form matters when dealing with these devices; multimodality concerning input and output is important and context information can be used to satisfy the requirement of unobtrusiveness. Here, Frameworks as middleware are a means to an end. Starting with an introduction on wearable computing, recent developments of Frameworks for context-aware user interface design are presented, motivating the need for future research on knowledge-based intuitive interaction design.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1372
Author(s):  
Liang Zhang ◽  
Jongwon Kim ◽  
Jie Sun

Four-wheel Mecanum mobile robots (FWMRs) are widely used in transportation because of their omnidirectional mobility. However, the FWMR trades off energy efficiency for flexibility. To efficiently predict the energy consumption of the robot movement processes, this paper proposes a power consumption model for the omnidirectional movement of an FWMR. A power consumption model is of great significance for reducing the power consumption, motion control, and path planning of robots. However, FWMRs are highly maneuverable, meaning their control is complicated and their energy modeling is extremely complex. The speed, distance, path, and power consumption of the robot can vary greatly depending on the control method. This energy model was mathematically implemented in MATLAB and validated by our laboratory’s Mecanum wheel robot. The prediction accuracy of the model was over 95% through simulation and experimental verification.


Sign in / Sign up

Export Citation Format

Share Document