A control strategy for rectilinear motion of a front-wheel drive bicycle robot

Author(s):  
Jing Li ◽  
Shimin Wei ◽  
Lei Guo ◽  
Jiming Liu
Robotica ◽  
2014 ◽  
Vol 33 (9) ◽  
pp. 1958-1972 ◽  
Author(s):  
Yonghua Huang ◽  
Qizheng Liao ◽  
Lei Guo ◽  
Shimin Wei

SUMMARYMechanical regulator-free bicycle robots have lighter weight and fewer actuators than the traditional regulator-based bicycle robots. In order to deal with the difficulty of maintaining balance for this kind of bicycle robot, we consider a front-wheel drive and mechanical regulator-free bicycle robot. We present the methodologies for realizing the robot's ultra-low-speed track-stand motion, moderate-speed circular motion and high-speed rectilinear motion. A simplified dynamics of the robot is developed using three independent velocities. From the dynamics, we suggest there may be an underactuated rolling angle in the system. Our balancing strategies are inspired by human riders' experience, and our control rules are based on the bicycle system's underactuated dynamics. In the case of track-stand and circular motion, we linearize the frame's rolling angle and configure the robot to maintain balance by the front-wheel's motion with a fixed front-bar turning angle. In the case of the rectilinear motion, we linearize both front-bar steering angle and front-wheel rotating angle, and configure the system to maintain balance by the front-bar's turning with a constant front-wheel rotating rate. Numerical simulations and physical experiments are given together to validate the effectiveness of our control strategies in realizing the robot's proposed three motions.


Author(s):  
Roman Chertovskih ◽  
Anna Daryina ◽  
Askhat Diveev ◽  
Dmitry Karamzin ◽  
Fernando L. Pereira ◽  
...  

Author(s):  
Hao Zhang ◽  
Zongxia Jiao ◽  
Yaoxing Shang ◽  
Xiaochao Liu ◽  
Pengyuan Qi ◽  
...  

1975 ◽  
Author(s):  
Donald L. Nordeen ◽  
Richard C. Manwaring ◽  
Dennis E. Condon

2016 ◽  
Vol 24 (9) ◽  
pp. 1774-1786 ◽  
Author(s):  
Sérgio J Idehara ◽  
Fernando L Flach ◽  
Douglas Lemes

A vibration model of the powertrain can be used to predict its dynamic behavior when excited by fluctuations in the engine torque and speed. The torsional vibration resulting from torque and speed fluctuations increases the rattle noise in the gearbox and it should be controlled or minimized in order to gain acceptance by clients and manufactures. The fact that the proprieties of the torsional damper integrated into the clutch disc alter the dynamic characteristic of the system is important in the automotive industry for design purposes. In this study, bench test results for the characteristics of a torsional damper for a clutch system (torsional stiffness and friction moment) and powertrain torsional vibration measurements taken in a passenger car were used to verify and calibrate the model. The adjusted model estimates the driveline natural frequency and the time response vibration. The analysis uses order tracking signal processing to isolate the response from the engine excitation (second-order). It is shown that a decrease in the stiffness of the clutch disc torsional damper lowers the natural frequency and an increase in the friction moment reduces the peak amplitude of the gearbox torsional vibration. The formulation and model adjustment showed that a nonlinear model with three degrees of freedom can represent satisfactorily the powertrain dynamics of a front-wheel drive passenger car.


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
A. Battiato ◽  
E. Diserens ◽  
L. Sartori

An analytical model to simulate the traction performance of mechanical front wheel drive MFWD tractors was developed at the Agroscope Reckenholz-Tänikon ART. The model was validated via several field tests in which the relationship between drawbar pull and slip was measured for four MFWD tractors of power ranging between 40 and 123 kW on four arable soils of different texture (clay, clay loam, silty loam, and loamy sand). The pulling tests were carried out in steady-state controlling the pulling force along numerous corridors. Different configurations of tractors were considered by changing the wheel load and the tyre pressure. Simulations of traction performance matched experimental results with good agreement (mean error of 8% with maximum and minimum values of 17% and 1% respectively). The model was used as framework for developing a new module for the excel application TASCV3.0.xlsm, a practical computer tool which compares different tractor configurations, soil textures and conditions, in order to determine variants which make for better traction performance, this resulting in saving fuel and time, i.e. reducing the costs of tillage management.


2014 ◽  
Vol 971-973 ◽  
pp. 454-457
Author(s):  
Gang He ◽  
Li Qiang Jin

Based on the independent design front wheel drive vehicle traction control system (TCS), we finished the two kinds of working condition winter low adhesion real vehicle road test, including homogenous pavement and separate pavement straight accelerate, respectively completed the contrastive experiment with TCS and without TCS. Test results show that based on driver (AMR) and brake (BMR) joint control ASR system worked reliably, controlled effectively, being able to control excessive driving wheel slip in time, effectively improved the driving ability and handling stability of vehicle.


Sign in / Sign up

Export Citation Format

Share Document