Calculation of Attenuation of Infrared Radiation Energy By Ship Water Mist

Author(s):  
Xiaomin Liu ◽  
Yongjin Liu ◽  
Qunnie Peng ◽  
Feiran Jie ◽  
Delie Ming
2021 ◽  
Vol 2112 (1) ◽  
pp. 012019
Author(s):  
Zhongke Sun ◽  
Zhen Wang ◽  
Zhongwei Chen ◽  
Zhihua Liu ◽  
Mo Liu ◽  
...  

Abstract The infrared radiation intensity in 3~5μm of conventional ship exhaust system are so severe [1] that can be easily captured by detector. Therefore, it’s necessary to take measure like spraying water mist to decrease temperature of exhaust system in order to decrease infrared radiation intensity. In this paper, the calculation of infrared radiation intensity of conventional ship exhaust system with water-mist spraying will be given. The results show that the average and maximum infrared radiation intensity of the exhaust system can be reduced by 90.3% and 95.7% after water mist cooling.


Author(s):  
Yu Zhao ◽  
Shijie Zheng

Aircraft infrared signature is one of the most important properties for the military aircraft survivability. In terms of military aircraft, the exhaust system is the most significant infrared radiation source. The exhaust system accounts for more than 90% of the aircraft infrared radiation, and that the exhaust nozzle contributes the most significant infrared radiation of the whole radiation energy provided by the exhaust system from the rear aspect. Low detectionable feature for military aircraft has attracted more importance to promote aircraft survivability via reducing infrared signature. The alteration of nozzle exit area affects an aircraft engine performance; meanwhile, it severely influences the engine infrared signature radiation from the rear side. The present paper is mainly focused on searching an appropriate group of nozzle exit diameter and throat to exit diameter ratio, which can reduce infrared signature radiation while cutting down the loss of thrust. Hence, objectives involve two aspects: one is minimum infrared signature level, and the other is minimum thrust loss. The multi-objective evolutionary algorithm based on decomposition has been employed to solve this bi-objective optimization problem. The optimization results illustrate that dimension selection range and throat to exit diameter ratio exert more important effect on the thrust loss and infrared signature level. Furthermore, the thrust plays significant role for deciding nozzle exit diameter and throat diameter.


2012 ◽  
Vol 268-270 ◽  
pp. 1648-1653
Author(s):  
Yue Ying Lv ◽  
Ying An

In order to solve the problem that the optic-electric detecting target board fails to work at nights or under low light level,it has studied the flying projectile’s properties of infrared radiation and the radiation attenuation properties of the flying projectile in the atmosphere. Through establishing the differential equations, the projectile’s surface temperature is obtained to calculate the flying projectile’s infrared radiation properties , according to atmosphere’s transmitting properties,the calculation method of atmospheric transmittance rate. The infrared radiation properties of three typical projectile are simulated by utilizing MATAB. The simulation result shows that the surface temperature of the flying projectile has a linear change with its velocity; the atmospheric transmittance rate is inversely proportional to the detection distance; Once the atmospheric attenuation factor is different, then the radiation energy received by the detector will be different.


Author(s):  
Dalibor Balner ◽  
Karla Barčová ◽  
Michal Dostál

Abstract This article focuses on the interaction of infrared (IR) radiation with water droplets. The main objective of the article is the production of water mist in order of evaluation the reduction in intensity of IR radiation. In the experiments described in this paper, a set of five different nozzles was used with various spray characteristics. The respective nozzles were gradually located between the IR radiation source and a detector and the attenuation of IR radiation was assessed. The reduction in IR radiation intensity was determined and IR radiation transmittance was calculated for the respective tested nozzles.


2004 ◽  
Vol 12 (4) ◽  
pp. 203-205 ◽  
Author(s):  
Milenko Stanojevic ◽  
Zorica Stanojevic ◽  
Dragan Jovanovic ◽  
Milena Stojiljkovic

Light radiation is a part of the electromagnetic radiation, and it consists of the ultraviolet (UV) radiation, visible light, and infrared radiation. UV radiation energy is absorbed in the form of photons in biomolecules (chromophores) and induces various cellular reactions, out of which photochemical and photosensitizing are the most significant. In contact with the skin UV radiation incites protection mechanisms: the most important are stratum corneum thickening and melanin synthesis (melanogenesis). Basic role of melanin is absorption and scattering of UV rays and neutralization of free radicals. In this review physical characteristics of UV radiation, its biological effects, and relation to melanogenesis and carcinogenesis are discussed.


2017 ◽  
Vol 46 (8) ◽  
pp. 804001
Author(s):  
李 伟 Li Wei ◽  
邵利民 Shao Limin ◽  
李树军 Li Shujun ◽  
周红进 Zhou Hongjin

1990 ◽  
Vol 37 (11) ◽  
pp. 887-893 ◽  
Author(s):  
Atsushi HASHIMOTO ◽  
Makoto TAKAHASHI ◽  
Taijiro HONDA ◽  
Masaru SHIMIZU ◽  
Atsuo WATANABE

2019 ◽  
Vol 8 (2) ◽  
pp. 71-77
Author(s):  
Ku Yeon Lee ◽  
◽  
Hyung H. Lee ◽  
Suk Chan Hahm

Sign in / Sign up

Export Citation Format

Share Document